## hands-on IR2PW

Web: <u>https://tm.iphy.ac.cn/UnconvMat.html</u> https://tm.iphy.ac.cn/TopMat\_1651msg.html

Source code: <a href="https://github.com/zjwang11/IR2PW/">https://github.com/zjwang11/IR2PW/</a>

Ref:

*Gao, J. et al. "IRVSP: to obtain irreducible representations in the VASP", Comput. Phys. Comm. 261, 107760 (2021). Zhang, R. et al. "Large shift current,*  $\pi$  *Zak phase and unconventional nature of Se and Te", Phys. Rev. Research 5, 023142 (2023).* 

Ruihan Zhang 2024/6/5

### Outline

- 0 Installation
- 1 Find band-crossing (or gap) —IRVSP
- 2 Solve the EBR/ABR decompositon and CR —IRVSP
- 3 Solve the CR and calculate SI —IRVSP
- 4 Calculate the phonon BRs by Quantum Espresso (QE) —IR2PH
- 5 Solve CR and calculate SI by IR2TB —IR2TB

#### 🚳 IR2PW Public

| 😚 main 👻 😚 1 Branch 🛇 0 Tags                        | Q Go to file t Add file +                          | <> Code -     |
|-----------------------------------------------------|----------------------------------------------------|---------------|
| AliceSato The IRVSP library is linked to DFT codes: | QE, VASP a1423bc - 2 months ago                    | 🕓 167 Commits |
| 🗋 IRphx.sh                                          | to prepare ph.x input and collect wavefunction     | 6 months ago  |
| C README.md                                         | about IR2PW and IR2TB                              | 5 months ago  |
| 🗅 fc2hr.py                                          | to convert ph.fc to phonon TB phhr_cm1.dat         | 6 months ago  |
| lib_irrep_bcs.tar.gz                                | The IRVSP library is linked to DFT codes: QE, VASP | 2 months ago  |
| 🗋 pwscf2tbbox.sh                                    | to convert scf.out (QE) to tbbox.in                | 9 months ago  |
| src_ir2pw_qe.tar.gz                                 | with an interface to QE                            | 9 months ago  |
| src_ir2pw_vasp.tar.gz                               | with an interface to VASP                          | 2 years ago   |
| src_ir2tb_hr.tar.gz                                 | with an interface to Wannier90/PhononTB            | 6 months ago  |
| src_ir2tb_ph.tar.gz                                 | with an interface to TB/Phonon wavefunctions       | 6 months ago  |
| 🗋 wechatgroup.jpg                                   | WeChat group                                       | last year     |
|                                                     |                                                    |               |

### 0 Installation

#### 1)

′\$ tar -zxvf lib\_irrep\_bcs.tar.gz

- \$ cd lib\_irrep\_bcs
- \$ ./configure.sh
- \$ make
- \$ cd ../

#### 2)

\$ tar -zxvf src\_ir2pw\_qe.tar.gz

\$ cd src\_ir2pw\_qe

\$ make

\$ cd ../

#### 3)

\$ tar -zxvf src\_ir2pw\_vasp.tar.gz

- \$ cd src\_ir2pw\_vasp
- \$ make
- \$ cd ../

#### 4)

\$ tar -zxvf src\_ir2tb\_hr.tar.gz

\$ cd src\_ir2tb\_hr

\$ make

\$ cd ../

#### 5)

- \$ tar -zxvf src\_ir2tb\_ph.tar.gz
- \$ cd src\_ir2tb\_ph
- \$ make
- \$ cd ../

#### https://github.com/zjwang11/ir2pw

## 1 Find band-crossing (or gap)

- In first-principles calculations, we often need to find band-crossing (or gap). If the k-points are not given enough, it may be difficult.
- Here we take the Na<sub>3</sub>Bi as an example to introduce how to calculate the band representations (BRs) of different kpoints to find band-crossing (or gap) by using IRVSP.

band structures with spin-orbit coupling



PHYSICAL REVIEW B 85,195320 (2012)

- 1) Prepare the original POSCAR file. (Na<sub>3</sub>Bi as an example)
- 2) \$ phonopy --tolerance 0.01 --symmetry -c POSCAR\$ vim PPOSCAR

#### "POSCAR"

| Na3Bi                                   |                       |                                         |
|-----------------------------------------|-----------------------|-----------------------------------------|
| L.U<br>4 71010620001762                 | 1 2 7240000000000     | 0,000,000,000,000,000,000               |
| 4.71810639981762                        |                       |                                         |
| 0.0000000000000000000000000000000000000 | 0 5.4480000000000000  | 0.0000000000000000000000000000000000000 |
| 0.000000000000000                       | 0 0.00000000000000    | 0 9.654999999999999                     |
| Na Bi                                   |                       |                                         |
| 62                                      |                       |                                         |
| Direc                                   |                       |                                         |
| 0.3333333333333333334                   | 0.66666666666666666   | 0.5830000042915345                      |
| -0.333333333333333334                   | -0.66666666666666666  | 1.0830000042915344                      |
| 0.666666666666666666                    | 0.3333333333333333334 | -0.5830000042915344                     |
| -0.6666666666666666                     | -0.33333333333333333  | -0.0830000042915344                     |
| 0.0000000000000000                      | 0.0000000000000000    | 0.250000000000000                       |
| 0.00000000000000000                     | 0.0000000000000000    | 0.750000000000000                       |
| 0.3333333333333333334                   | 0.66666666666666666   | 0.250000000000000                       |
| -0.333333333333333334                   | -0.6666666666666666   | 0.750000000000000                       |

#### "PPOSCAR"

| generated by phonopy                    |                                         |                       |
|-----------------------------------------|-----------------------------------------|-----------------------|
| 1.0                                     |                                         |                       |
| 5.448000000000000                       | 4 0.00000000000000                      | 00 0.0000000000000000 |
| -2.724000000000000                      | 2 4.71810639981762                      | 23 0.0000000000000000 |
| 0.0000000000000000000000000000000000000 | 0.00000000000000000                     | 00 9.6549999999999994 |
| Na Bi                                   |                                         |                       |
| 6 2                                     |                                         |                       |
| Direct                                  |                                         |                       |
| 0.333333333333333333333                 | 0.66666666666666666                     | 0.5830000042915345    |
| 0.6666666666666666                      | 0.333333333333333333333                 | 0.0830000042915344    |
| 0.6666666666666666                      | 0.3333333333333333333                   | 0.4169999957084655    |
| 0.333333333333333333333                 | 0.6666666666666666                      | 0.9169999957084655    |
| 0.00000000000000000                     | 0.0000000000000000000000000000000000000 | 0.2500000000000000    |
| 0.000000000000000000                    | 0.0000000000000000000000000000000000000 | 0.7500000000000000    |
| 0.33333333333333333333333               | 0.666666666666666666                    | 0.2500000000000000    |
| 0.6666666666666666                      | 0.3333333333333333333334                | 0.7500000000000000    |

#### Open the web: <a href="https://tm.iphy.ac.cn/UnconvMat.html">https://tm.iphy.ac.cn/UnconvMat.html</a>

#### 3) POS2ABR > ABR.out (converting PPOSCAR to POSCAR\_std and generating ABRs)

#### (\* paste PPOSCAR below or download the source code \*)

| 1) | Bustern Below of downle                                          |                                            |
|----|------------------------------------------------------------------|--------------------------------------------|
| 1) | generated by phonopy                                             |                                            |
|    | 5.448000000000004 0.00000000                                     | 0.0000000000000000000000000000000000000    |
|    | 0.0000000000000000000000000000000000000                          | 0.0000000000000000000000000000000000000    |
|    | Na Bi<br>6 2                                                     |                                            |
|    | Direct                                                           |                                            |
|    | <u>0.3333333333333333</u> 0.666666666666666666666666666666666666 | 666 0.5830000042915345                     |
|    | 0.6666666666666666666666666666666666666                          | 333 0. 0830000042915344                    |
|    | 0.6666666666666666666666666666666666666                          | <u>334</u> 0. 4169999957084655             |
|    |                                                                  | 0.9169999957084655                         |
|    |                                                                  |                                            |
|    | 0. 33333333333333333 0. 666666666666666                          | 66 0.2500000000000000000000000000000000000 |
|    | 0. 666666666666666666666666666666666666                          | <u>334</u> 0. 7500000000000000             |
|    |                                                                  |                                            |

1) Paste PPOSCAR into this box.

2) Press POS2ABR button.

2

We can get the standard POSCAR (POSCAR\_std) and the space group number of Na<sub>3</sub>Bi is 194.

Copy the content in the red box to POSCAR, and then do VASP calculations.

|   |     |      |       |      |       |      | ```   |      |      |      |      |       |       |      |      |       |       |   |
|---|-----|------|-------|------|-------|------|-------|------|------|------|------|-------|-------|------|------|-------|-------|---|
|   | POS | CAR  | std   | :    |       |      |       |      |      |      |      |       |       |      |      |       |       |   |
| / | SG  | 194  | 0.    | 000  | 0.00  | 0 0  | .000  | :Ge  | nera | ted  | by   | pos2a | aBR f | or i | irvs | p!    |       |   |
|   |     | 1.0  | 0     |      |       |      |       |      |      |      |      |       |       |      |      |       |       |   |
|   |     | 5    | . 448 | 0000 | 00000 | 0004 |       | 0.0  | 0000 | 0000 | 0000 | 0000  |       | 0.00 | 0000 | 00000 | 00000 | 0 |
|   |     | -2   | .724  | 0000 | 00000 | 0002 |       | 4.7  | 1810 | 6399 | 9817 | 6223  |       | 0.00 | 0000 | 00000 | 00000 | 0 |
|   |     | 0    | .000  | 0000 | 00000 | 0000 |       | 0.0  | 0000 | 0000 | 0000 | 0000  |       | 9.65 | 5499 | 99999 | 99999 | 4 |
|   | Na  | . B: | i     |      |       |      |       |      |      |      |      |       |       |      |      |       |       |   |
|   |     | 6    | 2     |      |       |      |       |      |      |      |      |       |       |      |      |       |       |   |
|   | Dir | ect  |       |      |       |      |       |      |      |      |      |       |       |      |      |       |       |   |
|   | 0   | .33  | 3333  | 3333 | 33333 | 33 0 | . 666 | 6666 | 6666 | 6666 | 56   | 0.583 | 80000 | 0429 | 9153 | 45    |       |   |
|   | 0   | .66  | 6666  | 6666 | 66666 | 57 0 | .333  | 3333 | 3333 | 3333 | 33   | 0.083 | 80000 | 0429 | 9153 | 44    |       |   |
|   | 0   | . 66 | 6666  | 6666 | 66666 | 57 0 | .333  | 3333 | 3333 | 3333 | 34   | 0.416 | 59999 | 9570 | 0846 | 55    |       |   |
|   | 0   | .33  | 3333  | 3333 | 33333 | 33 0 | . 666 | 6666 | 6666 | 6666 | 57   | 0.916 | 59999 | 9570 | 0846 | 55    |       |   |
|   | 0   | .00  | 0000  | 0000 | 00000 | 0 0  | .000  | 0000 | 0000 | 0000 | 00   | 0.250 | 0000  | 0000 | 0000 | 00    |       |   |
|   | 0   | .00  | 0000  | 0000 | 00000 | 0 0  | .000  | 0000 | 0000 | 0000 | 00   | 0.750 | 0000  | 0000 | 0000 | 00    |       |   |
|   | 0   | .33  | 3333  | 3333 | 33333 | 33 0 | . 666 | 6666 | 6666 | 6666 | 56   | 0.250 | 0000  | 0000 | 0000 | 00    |       |   |
|   | 0   | .66  | 6666  | 6666 | 66666 | 57 0 | .3333 | 3333 | 3333 | 3333 | 34   | 0.750 | 0000  | 0000 | 0000 | 00    |       |   |

Through the analysis of the band structure, we find that there may be a band-crossing in the  $A - \Gamma$  path near the Fermi energy.



. . .

-nb #nmin #nmax : Minimum and maximum target band numbers

#### \$ irvsp -sg 194 -nb 61 66 > outir \$ vim outir

#### outir:

| knum = 15 kname=<br>k = 0.000000 0.000000 0.131579 |                 |  |  |  |  |  |  |
|----------------------------------------------------|-----------------|--|--|--|--|--|--|
| <br>bnd ndg eigval E                               | 24              |  |  |  |  |  |  |
| 61 2 1.991043 2.00+0.00i                           | 0.00+0.00i =DT7 |  |  |  |  |  |  |
| 63 2 2.185607 2.00+0.00i                           | 0.00+0.00i =DT7 |  |  |  |  |  |  |
| 65 2 2.218277 2.00+0.00i                           | 0.00+0.00i =DT8 |  |  |  |  |  |  |

IRVSP will read the wave function from WAVECAR and calculate the BRs at each k point.

| knum = 16 kname=<br>k = 0.000000 0.000000 0.105263 |                 |  |  |  |  |  |  |  |  |
|----------------------------------------------------|-----------------|--|--|--|--|--|--|--|--|
| <br>bnd ndg eigval E                               | 24              |  |  |  |  |  |  |  |  |
| 61 2 1.987986 2.00+0.00i                           | 0.00+0.00i =DT7 |  |  |  |  |  |  |  |  |
| 63 2 2.158086 2.00+0.00i                           | 0.00+0.00i =DT8 |  |  |  |  |  |  |  |  |
| 65 2 2.188929 2.00+0.00i                           | 0.00+0.00i =DT7 |  |  |  |  |  |  |  |  |

We can see that the orders of BRs at No. 15 k-point and No. 16 k-point are different, so there is a symmetry-protected band-crossing in the  $A - \Gamma$  path near the Fermi energy.

There is a Dirac point between #nk 15 and #nk 16.



### 2 Solve the EBR/ABR decompositon and CR

- Based on topological quantum chemistry theory, we can calculate the irreducible representations (irreps) at several high-symmetry k-points (HSKPs) to diagnose whether the band structure of a material is topological.
- If the irreps of all occupied bands cannot be decomposed as a sum of elementary BRs (EBRs), this material is topological.
- If the irreps of all occupied bands can be decomposed as a sum of EBRs but cannot be decomposed as a sum of atomic valence-electron BRs (ABRs), this material is topologically trivial but has unconventional properties.

### 2 Solve the EBR/ABR decomposition and CR and calculate SI

 Here we take the topological material Bi<sub>2</sub>Se<sub>3</sub> and unconventional material NbSe<sub>2</sub> as examples to introduce how to calculate irreps to solve EBR/ABR decompositions and the compatibility relationship (CR) and symmetry indicators (SIs) to diagnose topological or unconventional materials.

 $2.1 \operatorname{Bi}_2\operatorname{Se}_3$ 

 Here we take the topological material Bi<sub>2</sub>Se<sub>3</sub> as an examples to introduce how to calculate irreps to solve the CR and SIs to diagnose topological materials. Band structure for Bi<sub>2</sub>Se<sub>3</sub> with SOC



Nature Physics volume 5, pages438–442 (2009)

- 1) Prepare the original POSCAR file. (Bi<sub>2</sub>Se<sub>3</sub> as an example)
- 2) \$ phonopy --tolerance 0.01 --symmetry -c POSCAR\$ vim PPOSCAR

"POSCAR"

| Bi2 Se3                                                     |
|-------------------------------------------------------------|
| 2.0669999122654712 1.1933829557614029 9.5433330536000032    |
| -2.0669999122654712 1.1933829557614029 9.5433330536000032   |
| 0.00000000000000 -2.3867659115228057 9.5433330536000032     |
| Bi Se                                                       |
| 2 3                                                         |
| Direct                                                      |
| 0.3980000423333330 0.3980000423333330 0.3980000423333331    |
| 0.60199995766666670 0.60199995766666670 0.60199995766666668 |
| 0.000000000000000 0.00000000000000 0.000000                 |
| 0.791999993999998 0.791999993999998 0.791999993999998       |
| 0.20800006000003 0.20800006000003 0.20800006000003          |

#### "PPOSCAR"

| generated by phonopy<br>1.0             |                          |                                         |
|-----------------------------------------|--------------------------|-----------------------------------------|
| 2.0669999122654712                      | 1.193382955761402        | 6 9.5433330536000014                    |
| -2.0669999122654712                     | 2 1.193382955761402      | 26 9.5433330536000014                   |
| -0.000000000000000                      | 1 -2.38676591152280      | 53 9.5433330536000014                   |
| Bi Se                                   |                          |                                         |
| 2 3                                     |                          |                                         |
| Direct                                  |                          |                                         |
| 0.3980000423333330 (                    | 0.39800004233333333      | 0.3980000423333333                      |
| 0.6019999576666670                      | 0.6019999576666669       | 0.60199995766666670                     |
| 0.0000000000000000000000000000000000000 | 0.0000000000000000000000 | 0.0000000000000000000000000000000000000 |
| 0.791999993999998                       | 0.7919999940000000       | 0.791999994000000                       |
| 0.208000060000002                       | 0 208000006000005        | 0 208000006000004                       |

phonopy\_version: '2.20.0'

space\_group\_type: 'R-3m'
space\_group\_number: 166
point\_group\_type: '-3m'

Open the web:<u>https://tm.iphy.ac.cn/TopMat\_1651msg.html</u>

|    | 3) POS2MSG (converting PPOSCAR to POSCAR_msg and initializing M                                                                                                                                      | IAGMOM on magnetic atoms)                                               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|    | #SG (1~230). 466 #MSG (1~1651). 40G setting)                                                                                                                                                         |                                                                         |
| 2) | (* paste PPOSCAR below *)                                                                                                                                                                            |                                                                         |
| 3) | generated by phonopy<br>1.0                                                                                                                                                                          | 1) Give the group number(SG) from phonopy: 166.                         |
|    | 2.0669999122654712 1.1933829557614026 9.5433330536000014<br>-2.0669999122654712 1.1933829557614026 9.5433330536000014<br>-0.00000000000000001 -2.3867659115228053 9.5433330536000014<br>Bi Se<br>2 3 | 2) Give any reasonable magnetic space group<br>(MSG) number, such as 1. |
|    | Direct<br>0.3980000423333330 0.3980000423333333 0.3980000423333333<br>0.60199995766666670 0.60199995766666669 0.60199995766666670<br>0.000000000000000 0.0000000000000 0.000000                      | 3) Paste PPOSCAR into this box.                                         |
|    | 0.791999993999998 0.791999994000000 0.7919999940000000<br>0.2080000060000002 0.2080000060000005 0.2080000060000004                                                                                   | 4) Press POS2MSG button.                                                |
|    |                                                                                                                                                                                                      |                                                                         |

4)

POS2MSG

The OG magnetic space group number do not match with the given space group number. Possible OG magnetic space group numbers are given below:

| 1327, | type | 1 |
|-------|------|---|
| 1328, | type | 2 |
| 1329, | type | 3 |
| 1330, | type | 3 |
| 1331, | type | 3 |
| 1332, | type | 4 |
| 1333, | type | 4 |

Nonmagnetic materials are the type-2 MSGs, which include time inversion operation.

Back to the web: https://tm.iphy.ac.cn/TopMat 1651msg.html



1) Give the correct space group (SG) number: 166.

2) Give the correct magnetic space group(MSG) number: 1328.

3) Paste PPOSCAR into this box.

4) Press POS2MSG button.

| POSCAR msg | <b>j</b> : |         |           |         |         |          |      |        |
|------------|------------|---------|-----------|---------|---------|----------|------|--------|
| SG#B 166   | OG         | ( 166.  | 2.1328)   | BNS     | (       | 166.98)  |      |        |
| 1.0        |            |         |           |         |         |          |      |        |
| 2.0669     | 999912     | 226547  | 1.193     | 382955  | 76140   | 9.543333 | 3053 | 360000 |
| -2.0669    | 999912     | 226547  | 1.193     | 382955  | 76140   | 9.543333 | 3053 | 360000 |
| -0.0000    | 00000      | 000000  | -2.386    | 765911  | 52281   | 9.543333 | 3053 | 360000 |
| Bi Se      | e          |         |           |         |         |          |      |        |
| 2 3        | 3          |         |           |         |         |          |      |        |
| Direct     |            |         |           |         |         |          |      |        |
| 0.3980     | 000042     | 233333  | 0.398     | 000042  | 33333   | 0.398000 | 0042 | 233333 |
| 0.6019     | 99995      | 766667  | 0.601     | 999957  | 66667   | 0.601999 | 995  | 766667 |
| 0.0000     | 00000      | 000000  | 0.000     | 000000  | 00000   | 0.00000  | 000  | 00000  |
| 0.7919     | 999994     | 100000  | 0.791     | 999994  | 00000   | 0.791999 | 9994 | 400000 |
| 0.2080     | 00000      | 500000  | 0.208     | 000006  | 00000   | 0.208000 | 000  | 600000 |
|            |            |         |           |         |         |          |      |        |
| INCAR:     |            |         |           |         |         |          |      |        |
| LSORBIT =  | т          |         |           |         |         |          |      |        |
| LNONCOLLIN | EAR =      | = T     |           |         |         |          |      |        |
| SAXIS = 0  | 0 1        |         |           |         |         |          |      |        |
| MAGMOM=300 | 0.0*0      |         |           |         |         |          |      |        |
|            |            |         |           |         |         |          |      |        |
| KPOINTS:   |            |         |           |         |         |          |      |        |
| MKPOINTS U | used f     | Eor mag | metic spa | ace gro | oup     |          |      |        |
| 4          |            |         | _         | _       | _       |          |      |        |
| rec        |            |         |           |         |         |          |      |        |
| 0.000      | 00000      | 0.0     | 0000000   | 0.0     | 0000000 | 1.0      | 1    | GM     |
| 0.5000     | 00000      | 0.5     | 0000000   | 0.5     | 0000000 | 1.0      | 1    | т      |
| 0.5000     | 00000      | 0.5     | 0000000   | 0.0     | 0000000 | 1.0      | 1    | F      |
| 0.000      | 00000      | 0.5     | 0000000   | 0.0     | 0000000 | 1.0      | 1    | L      |
|            |            |         |           |         |         |          |      |        |

We can get the standard POSCAR (POSCAR\_msg) and some setting parameters of INCAR and KPOINTS.

All space groups' HSKPs can be found on: https://github.com/zjwang11/IR2PW/ lib\_irrep\_bcs/max\_KPOINTS\_VASP/

Then we do VASP calculations.

The number of valence electrons in Bi<sub>2</sub>Se<sub>3</sub> is 48

# \$ irvsp -sg 166 -nb 1 48 > outir \$ vim tqc.data

After IRVSP calculating the wave function of HSKPs, file tqc.data will be generated.

#### "tqc.data"

#### 166 4 48

8 11 9 10 12 11 12 11 12 11 12 11 12 9 10 11 910 7 8 1 2 9 10 11 11 12 11 12 11 12 12 9 10 11 12 12 9 10 7 8 11 910 8 1 1 9 8 8 8 5 6 78 5 5 8 87856787856785656787878 7 8 5 6 7 8 5 6 7 8 5 6 7878565656 5 5 6 7

#### Format of tqc.data

#SG (space group number) #nk (number of HSKPs) #nb (number of bands) HSKP#1 irrep(HSKP#1)#1 irrep(HSKP#1)#2 ... HSKP#2 irrep(HSKP#2)#1 irrep(HSKP#2)#2 ...

Back to the web: <a href="https://tm.iphy.ac.cn/TopMat\_1651msg.html">https://tm.iphy.ac.cn/TopMat\_1651msg.html</a>



4) Press cal\_SI button.

solve\_CR :

cal\_SI :

The input data is calculated with spin-orbit coupling. Satisfy  $\ensuremath{\mathsf{CR}}$ 

The input data is calculated with spin-orbit coupling. Z2=0, Z4=1,

We can see that  $Bi_2Se_3$  satisfies the CR, and its SI is Z4=1, so we can diagnose that this is a topological material.

 $2.2 \text{ NbSe}_2$ 

 Here we take the unconventional material 1H-NbSe<sub>2</sub> as an examples to introduce how to calculate irreps to solve ABR decompositions to diagnose unconventional materials.





Sci. China-Phys. Mech. Astron. 67, 246811 (2024)

- 1) Prepare the original POSCAR file. (NbSe<sub>2</sub> as an example)
- 2) \$ phonopy --tolerance 0.01 --symmetry -c POSCAR\$ vim PPOSCAR

#### "POSCAR"

| qe relaxed<br>1.0 |              |                                         |
|-------------------|--------------|-----------------------------------------|
| 3.482232429       | -0.000000000 | 0.00000000                              |
| -1.741116214      | 3.015701745  | 0.00000000                              |
| -0.00000000       | -0.000000000 | 36.495581638                            |
| Se Nb             |              |                                         |
| 21                |              |                                         |
| Direct            |              |                                         |
| 0.333332986       | 0.666666985  | 0.0460155773000000                      |
| 0.333332986       | 0.666666985  | 0.9539844227000000                      |
| 0.666666985       | 0.333332986  | 0.0000000000000000000000000000000000000 |

#### "PPOSCAR"

| generated by phonopy                                       |
|------------------------------------------------------------|
| 1.0                                                        |
| 3.4822324287035307 0.00000000000000 0.0000000000000000     |
| -1.7411162143517653 3.0157017451392405 0.00000000000000000 |
| 0.00000000000000 0.0000000000000 36.4955816379999973       |
| Se Nb                                                      |
| 2 1                                                        |
| Direct                                                     |
| 0.00000000000000 0.00000000000000 0.0460155773000001       |
| 0.00000000000000 0.00000000000000 0.9539844226999999       |
| 0.3333333333333334_0.66666666666666667_0.000000000000000   |

Open the web: <u>https://tm.iphy.ac.cn/UnconvMat.html</u>

3) POS2ABR > ABR.out (converting PPOSCAR to POSCAR\_std and generating ABRs)



1) Paste PPOSCAR into this box.

2) Press POS2ABR button.

We can get the standard POSCAR (POSCAR\_std) and the space group number of NbSe<sub>2</sub> is 187.

Copy the content in the red box to POSCAR.

|      |       |          |      |      |      | $\mathbf{X}$ |       |        |     |         |       |         |        |      |
|------|-------|----------|------|------|------|--------------|-------|--------|-----|---------|-------|---------|--------|------|
| POS  | CAR   | std      | :    |      |      | X            |       |        |     |         |       |         |        |      |
| SG 🗄 | 187   | 0.0      | 00   | 0.00 | 0 0  | .000         | :Gene | erated | by  | pos2aBR | for   | irvsp!  |        |      |
|      | 1.0   | )        |      |      |      |              |       |        |     |         |       |         |        |      |
|      | 3.    | 4822     | 3242 | 8703 | 5307 |              | 0.00  | 000000 | 000 | 00000   | 0.0   | 000000  | 000000 | 0000 |
|      | -1.   | 7411     | 1621 | 4351 | 7653 |              | 3.01  | 570174 | 513 | 92405   | 0.0   | 000000  | 000000 | 0000 |
|      | 0.    | 0000     | 0000 | 0000 | 0000 |              | 0.00  | 000000 | 000 | 00000   | 36.4  | 1955816 | 379999 | 973  |
| Se   | Nk    | <b>b</b> |      |      |      |              |       |        |     |         |       |         |        |      |
| :    | 2     | 1        |      |      |      |              |       |        |     |         |       |         |        |      |
| Dir  | ect   |          |      |      |      |              |       |        |     |         |       |         |        |      |
| 0    | .000  | 0000     | 0000 | 0000 | 0 0  | .0000        | 00000 | 000000 | 00  | 0.04601 | 55773 | 3000001 |        |      |
| 0    | .000  | 0000     | 0000 | 0000 | 0 0  | .0000        | 00000 | 000000 | 00  | 0.95398 | 44226 | 5999999 | )      |      |
| 0    | . 333 | 33333    | 3333 | 3333 | 4 0  | . 6666       | 56666 | 666666 | 67  | 0.00000 | 00000 | 000000  | )      |      |

Note: When we diagnose whether the band structure of a material is unconventional, we only need to calculate irreps at several maximal HSKPs.

All space groups' HSKPs can be found on: https://github.com/zjwang11/IR2PW/lib\_ir rep\_bcs/max\_KPOINTS\_VASP/

First, do scf VASP calculations. Second, paste KPOINTS\_187.txt into KPOINTS and do nscf VASP calculations. "KPOINTS\_187.txt"

| k-points   |            |            |     |
|------------|------------|------------|-----|
| 6          |            |            |     |
| rec        |            |            |     |
| 0.00000000 | 0.00000000 | 0.50000000 | 1.0 |
| 0.00000000 | 0.00000000 | 0.00000000 | 1.0 |
| 0.33333300 | 0.33333300 | 0.50000000 | 1.0 |
| 0.33333300 | 0.33333300 | 0.00000000 | 1.0 |
| 0.5000000  | 0.00000000 | 0.50000000 | 1.0 |
| 0.5000000  | 0.00000000 | 0.00000000 | 1.0 |
|            |            |            |     |

The number of valence electrons in  $NbSe_2$  is 25, we only focus on the half-filled band #13. (without SOC)

After IRVSP calculating the wave function of HSKPs, file tqc.data will be generated.

#### "tqc.data"

\$ vim tqc.data

\$ irvsp -sg 187 -nb 13 13 > outir



#### Format of tqc.data

...

#SG (space group number) #nk (number of HSKPs) #nb (number of bands) HSKP#1 irrep(HSKP#1)#1 irrep(HSKP#1)#2 ... HSKP#2 irrep(HSKP#2)#1 irrep(HSKP#2)#2 ...

#### Open the web: <u>https://tm.iphy.ac.cn/UnconvMat.html</u>

6) solve EBR and ABR decompositions (using tqc.data and PPOSCAR).



1) Paste tqc.data into this box.

2) Press EBR\_decomp button.

3) Press ABR\_decomp button.

Step 7

| 2) Press EBR_decomp | button. | There | are 1<br>1           | solutions | for eBR | dec | composition. |
|---------------------|---------|-------|----------------------|-----------|---------|-----|--------------|
|                     |         | 1     | 1@10                 | A1'@1f    | (1      | ) : | 0;           |
|                     |         | 2     | 2@10                 | A2'@1f    | (1      | ) : | 0;           |
|                     |         | 3     | 3@10                 | A2''@1f   | (1      | ) : | 0;           |
|                     |         | 4     | 4@10                 | A1''@1f   | (1      | ) : | 0;           |
|                     |         | 5     | 5@10                 | E'@1f     | (1      | ) : | 0;           |
|                     |         | 6     | 6@10                 | E''@1f    | (1      | ) : | 0;           |
|                     |         | 7     | 1@11                 | A1'@1e    | (1      | ) : | 1;           |
|                     |         | 8     | 2@11                 | A2'@1e    | (1      | ) : | 0;           |
|                     |         | 9     | 3@11                 | A2''@1e   | (1      | ) : | 0;           |
|                     |         | 10    | 4@11                 | A1''@1e   | (1      | ) : | 0;           |
|                     |         | 11    | 5@11                 | E'@1e     | (1      | ) : | 0;           |
|                     |         | 12    | <b>6</b> @ <b>11</b> | E''@1e    | (1      | ) : | 0;           |
|                     |         | 13    | 1@12                 | A1'@1d    | (1      | ) : | 0;           |
|                     |         | 14    | 2@12                 | A2'@1d    | (1      | ) : | 0;           |
|                     |         | 15    | 3@12                 | A2''@1d   | ( 1     | ) : | 0;           |
|                     |         | 16    | 4@12                 | A1''@1d   | ( 1     | ) : | 0;           |
|                     |         | 17    | 5@12                 | E'@1d     | ( 1     | ) : | 0;           |
|                     |         | 18    | 6@12                 | E''@1d    | ( 1     | ) : | 0;           |
|                     |         | 19    | 1@13                 | A1'@1c    | ( 1     | ) : | 0;           |
|                     |         | 20    | 2@13                 | A2'@1c    | ( 1     | ) : | 0;           |
|                     |         | 21    | 3@13                 | A2''@1c   | ( 1     | ) : | 0;           |
|                     |         | 22    | 4013                 | Al''@lc   | ( 1     | ) : | 0;           |
|                     |         | 23    | 5@13                 | E'@lc     | ( 1     | ) : | 0;           |
|                     |         | 24    | 6013                 | E''@lc    | ( 1     | ) : | 0;           |
|                     |         | 25    | 1@14                 | A1'@1b    | ( 1     | ) : | 0;           |
|                     |         | 26    | 2014                 | A2'@1b    | ( 1     | ) : | 0;           |
|                     |         | 27    | 3014                 | A2''@1b   | ( 1     | ) : | 0;           |
|                     |         | 28    | 4014                 | A1''@1b   | ( 1     | ) : | 0;           |
|                     |         | 29    | 5014                 | E'@1b     | ( 1     | ) : | 0;           |
|                     |         | 30    | 6014                 | E''@1b    | ( 1     | ) : | 0;           |
|                     |         | 31    | 1015                 | Al'@la    | ( 1     | ) : | 0;           |
|                     |         | 32    | 2015                 | A2'@la    | ( 1     | ) : | 0;           |
|                     |         | 33    | 3015                 | A2''@la   | ( 1     | ) : | 0;           |
|                     |         | 34    | 4015                 | Al''@la   | ( 1     | ) : | 0;           |
|                     |         | 35    | 5015                 | E'@la     | ( 1     | ) : | 0;           |
|                     |         | 36    | 6015                 | E''@la    | (1      | ) : | 0;           |

#### topologically trivial

| 3) Press ABR_decomp button |         | 18         | 7 P-6m     | 2          |           |            |      |               |           |                          |
|----------------------------|---------|------------|------------|------------|-----------|------------|------|---------------|-----------|--------------------------|
|                            | SN<br>1 | Mult.<br>2 | Wyck.<br>9 | Aton<br>34 | ns<br>2   | р (<br>4 ( | a Wy | ck.Na<br>2g S | ame<br>Se |                          |
|                            | 2       | 1          | 13         | 41         | 1         | 6 4        | 1    | 1c 1          | 1b        |                          |
|                            | SN      | Orb.       | @ Site     |            | Symm.     |            | BCS  | CJB           | MUL       |                          |
|                            | 1       | Se-s       | @ 2gr(     | 9)         | 3m(19)    | >>>        | (1)  | (2)           | (3)       | Basis                    |
|                            |         |            |            |            |           | 1          | GM1  | ; GM1         | ; A1 ;    | z;x2+y2;z2               |
| The irrens induced         | 1       | Se-p       | @ 2g(      | 9)         | 3m(19)    | >>>        | (1)  | (2)           | (3)       | Basis                    |
| me meps muuceu             |         |            |            |            |           | 1          | GM1  | ; GM1         | ; A1 ;    | z;x2+y2;z2               |
|                            |         |            |            |            |           | 3          | GM3  | ; GM3         | ;E ;      | x,y;xz,yz;x2-y2,xy;Jx,Jy |
| by atomic-ordital          | 2       | Nb-s       | 0 1c(1     | 3) -       | -62m (26) | >>>        | (1)  | (2)           | (3)       | Basis                    |
| <b>J</b>                   |         |            |            |            |           | 1          | GM1  | ; GM1         | ; A1';    | x2+y2;z2                 |
|                            | 2       | Nb-p       | @ 1c(1     | 3) -       | -62m (26) | >>>        | (1)  | (2)           | (3)       | Basis                    |
|                            |         |            |            |            |           | 3          | GM3  | ; GM4         | ;A2'';    | Z                        |
|                            |         |            |            |            |           | 5          | GM5  | ; GM6         | ; E' ;    | х,у;х2-у2,ху             |
|                            | 2       | Nb-d       | @ 1c(1     | 3) -       | -62m (26) | >>>        | (1)  | (2)           | (3)       | Basis                    |
|                            |         |            |            |            |           | 1          | GM1  | ; GM1         | ; A1';    | x2+y2;z2                 |
|                            |         |            |            |            |           | 5          | GM5  | ; GM6         | ; E' ;    | x,y;x2-y2,xy             |
|                            |         |            |            |            |           | 6          | GM6  | ; GM5         | ; E'';    | xz,yz;Jx,Jy              |

There are 1 solutions for eBR decomposition.

There are 0 solutions for aBR decomposition. It is unconventional with charge mismatch.

Al'@1e : the essential BR +aBRs : 1 109 A1@2g 1 2) : 0; ( E@2g (1):0; 2 309 3 1@13 A1'@1c ( 2) : 0; 3013 A2''@1c (1): 4 0; 2) : 5 5@13 0; E'@1c ( 6 6@13 (1):0; E''@1c

#### unconventional material

#### 3 Solve the CR and calculate SI

- Using the CRs and magnetic BRs (MBRs), we reproduce the symmetrybased classifications for MSGs, and we obtain a set of Fu-Kane-like formulas of symmetry indicators (SIs) in both spinless (bosonic) and spinful (fermionic) systems, which are implemented in an automatic code—TOPMAT—to diagnose topological magnetic materials.
- Here we take the magnetic material Eu<sub>3</sub>In<sub>2</sub>As<sub>4</sub> and nonmagnetic material SnTe as examples to introduce how to solve the CR and calculate SI to magnetic topological materials.

 $3.1.1 \text{ Eu}_3 \ln_2 \text{As}_4 - \text{AFMc}$ 

The band structures of Eu3In2As4 for the magnetic configuration AFMc

• Here we take the magnetic material Eu<sub>3</sub>In<sub>2</sub>As<sub>4</sub> (AFMc) as an examples to introduce how to calculate irreps to solve the CR and Sis to diagnose topological magnetic materials.



arXiv:2403.07637(2024)

- 1) Prepare the original POSCAR file. ( $Eu_3In_2As_4$  as an example)
- 2) \$ phonopy --tolerance 0.01 --symmetry -c POSCAR\$ vim PPOSCAR

| EulnAs            |                                         |                                         |  |
|-------------------|-----------------------------------------|-----------------------------------------|--|
| 6.82999992370000  | 0.0000000000000000                      | 0.0000000000000000000000000000000000000 |  |
| 0.000000000000000 | 16.50670051570000                       | 0.0000000000000000000000000000000000000 |  |
| 0.00000000000000  | 0.0000000000000000000000000000000000000 | 4.41020011900000                        |  |
| Eu In As          |                                         |                                         |  |
| 6 4 8             |                                         |                                         |  |
| Direct            |                                         |                                         |  |
| 0.000000000000000 | 0.50000000000000                        | 0.00000000000000                        |  |
| 0.50000000000000  | 0.000000000000000                       | 0.50000000000000                        |  |
| 0.70820999100000  | 0.69827002300000                        | 0.00000000000000                        |  |
| 0.29179000900000  | 0.30172997700000                        | 0.00000000000000                        |  |
| 0.79179000900000  | 0.19827002300000                        | 0.50000000000000                        |  |
| 0.20820999100000  | 0.80172997700000                        | 0.50000000000000                        |  |
| 0.36037999400000  | 0.58630001500000                        | 0.50000000000000                        |  |
| 0.63962000600000  | 0.41369998500000                        | 0.50000000000000                        |  |
| 0.13962000600000  | 0.08630001500000                        | 0.000000000000000                       |  |
| 0.86037999400000  | 0.91369998500000                        | 0.00000000000000                        |  |
| 0.74603998700000  | 0.56970000300000                        | 0.50000000000000                        |  |
| 0.25396001300000  | 0.43029999700000                        | 0.50000000000000                        |  |
| 0.75396001300000  | 0.06970000300000                        | 0.00000000000000                        |  |
| 0.24603998700000  | 0.93029999700000                        | 0.0000000000000000000000000000000000000 |  |
| 0.23329000200000  | 0.00851002000000                        | 0.0000000000000000000000000000000000000 |  |
| 0.76670999800000  | 0.33148998000000                        | 0.0000000000000000000000000000000000000 |  |
| 0.20070999800000  | 0.10851002000000                        | 0.5000000000000000000000000000000000000 |  |
| 0.73329000200000  | 0.83148998000000                        | 0.5000000000000000000000000000000000000 |  |

"POSCAR"

phonopy\_version: '2.20.0' space\_group\_type: 'Pnnm' space\_group\_number: 58 point\_group\_type: 'mmm'

#### "PPOSCAR"

| generated by phonopy                                                  |
|-----------------------------------------------------------------------|
| 1.0                                                                   |
| 6.8299999237000000 0.00000000000000 0.000000000000                    |
| 0.0000000000000000000000000000000000000                               |
| 0.00000000000000 0.0000000000000 4.4102001189999980                   |
| Eu In As                                                              |
| 6 4 8                                                                 |
| Direct                                                                |
| 0.00000000000000 0.50000000000000 0.00000000                          |
| 0.50000000000000 0.00000000000000 0.500000000                         |
| 0.7082099910000000 0.6982700230000001 0.0000000000000000              |
| 0.291790009000000 0.3017299770000001 0.0000000000000000               |
| 0.791790009000000 0.1982700230000001 0.500000000000000                |
| 0.2082099909999999 0.8017299770000003 0.5000000000000001              |
| 0.3603799940000000 0.5863000150000001 0.5000000000000000              |
| 0.6396200060000000 0.4136999850000002 0.5000000000000000              |
| 0.139620006000000 0.086300015000000 0.000000000000000                 |
| 0.8603799940000000 0.9136999850000003 0.0000000000000000              |
| 0.7460399870000000 0.5697000030000001 0.500000000000000               |
| 0.2539600130000000 0.4302999970000001 0.5000000000000001              |
| 0.7539600130000000 0.0697000029999999 0.0000000000000000              |
| 0.2460399870000001 0.9302999970000002 0.0000000000000000              |
| 0.2332900020000000 0.668510020000001 0.0000000000000000               |
| 0.7667099980000001 0.331489980000000 0.0000000000000000               |
| 0.2667099980000000 0.1685100200000001 0.5000000000000000              |
| 0.7332900019999999 0.831489980000002 0.500000000000000000000000000000 |

The crystalline space group is what the crystal has if the magnetic order is neglected. Once condidering magnetic order, the MSGs, magnetic type, and the symmetry-indicator classifications are given below. For each MSG, the detailed information is given in the corresponding MSG table.

| OG setting |         | BNS setting |         | MSG type | Detailed Inf.        | integer spin     | half-integer spin |
|------------|---------|-------------|---------|----------|----------------------|------------------|-------------------|
| 58.1.471   | Pnnm    | Pnnm        | #58.393 | I        | Table MSG471         | $Z_2$            | $Z_2$             |
| 58.2.472   | Pnnm1'  | Pnnm1'      | #58.394 | II       | Table MSG472         | $Z_2$            | $Z_4$             |
| 58.3.473   | Pn'nm   | Pn'nm       | #58.395 | III      | Table MSG473         | Ø                | Ø                 |
| 58.4.474   | Pnnm'   | Pnnm'       | #58.396 | III      | Table MSG474         | Ø                | Ø                 |
| 58.5.475   | Pn'n'm  | Pn'n'm      | #58.397 | III      | Table MSG475         | $Z_2 \times Z_2$ | $Z_2 \times Z_2$  |
| 58.6.476   | Pnn'm'  | Pnn'm'      | #58.398 | III      | Table MSG476         | $Z_2$            | $Z_2$             |
| 58.7.477   | Pn'n'm' | Pn'n'm'     | #58.399 | III      | Table MSG477         | Ø                | Ø                 |
|            |         | $P_annm$    | #58.400 | IV       | OG <b>53</b> .12.426 |                  |                   |
|            |         | $P_cnnm$    | #58.401 | IV       | OG <b>55</b> .10.450 |                  |                   |
|            |         | $P_Bnnm$    | #58.402 | IV       | OG <b>63</b> .15.525 |                  |                   |
|            |         | $P_C nnm$   | #58.403 | IV       | OG <b>66</b> .11.574 |                  |                   |
|            |         | $P_I nnm$   | #58.404 | IV       | OG <b>71</b> .8.628  |                  |                   |

#### Open the web: https://tm.iphy.ac.cn/TopMat\_1651msg.html

1 2 POS2MSG (converting PPOSCAR to POSCAP msg and initializing MAGMOM on magnetic atoms) #SG (1~230 58 #MSG (1~165(): 471 (OG setting) (\* paste PPOSCAR below \*) generated by phonopy 1.0 6.8299999237000000 16.5067005156999969 4.4102001189999980 Eu In As ĥ Direct 0.50000000000000000 0.000000000000000000 0.500000000000000000 0.7082099910000000 0.6982700230000001 0.2917900090000000 0.3017299770000001 0.7917900090000000 0.1982700230000001 0.50000000000000000 0.2082099909999999 0.8017299770000003 0.500000000000000000 0.3603799940000000 0.5863000150000001 0.50000000000000000 0.639620006000000 0.4136999850000002 0.50000000000000000 0.1396200060000000 0.0863000150000000 0.8603799940000000 0.9136999850000003 0.7460399870000000 0.5697000030000001 0.500000000000000000 0.2539600130000000 0.4302999970000001 0.500000000000000000 0.753960013000000 0.0697000029999999 0.2460399870000001 0.9302999970000002 0.2332900020000000 0.6685100200000001 0.7667099980000001 0.3314899800000000 0.2667099980000000 0.168510020000001 0.50000000000000000 0.7332900019999999 0.831489980000002 0.500000000000000000

1) Give the correct space group (SG) number: 58.

2) Give the MSG number: 471.

3) Paste PPOSCAR into this box.

4) Press POS2MSG button.

3)

POS2MSG

| POSCAR msg:       |                |            |                     |                |
|-------------------|----------------|------------|---------------------|----------------|
| SG#B 58 OG (      | 58.1.471)      | BNS (      | 58.393)             | $Ctoo \Lambda$ |
| 1.0               |                |            |                     | <b>SIED 4</b>  |
| 6.8299999237      | 0000 0.0000    | 0000000000 | 0.000000000         |                |
| 0.000000000       | 0000 16.5067   | 0051570000 | 0.000000000         | 00000          |
| 0.000000000       | 0000 0.0000    | 0000000000 | 4.4102001190        | 00000          |
| Eu In As          |                |            |                     |                |
| 6 4 8             |                |            |                     |                |
| Direct            |                |            |                     |                |
| 0.000000000       | 0000 0.5000    | 0000000000 | 0.000000000         | 00000          |
| 0.500000000       | 0000 0.0000    | 0000000000 | 0.500000000         | 00000          |
| 0.7082099910      | 0000 0.6982    | 7002300000 | 0.000000000         | 00000          |
| 0.2917900090      | 0000 0.3017    | 2997700000 | 0.000000000         | 00000          |
| 0.7917900090      | 0000 0.1982    | 7002300000 | 0.500000000         |                |
| 0.2082099910      | 0000 0.8017    | 2997700000 | 0.500000000         |                |
| 0.3603799940      | 0000 0.5863    | 0001500000 | 0.500000000         | 00000          |
| 0.6396200060      | 0000 0.4136    | 9998500000 | 0.500000000         | DO000 DOO      |
| 0.1396200060      | 0000 0.0863    | 0001500000 | 0.000000000         |                |
| 0.8603799940      | 0000 0.9136    | 9998500000 | 0.0000000000        | 00000          |
| 0.7460399870      | 0000 0.5697    | 0000300000 | 0.500000000         |                |
| 0.2539600130      | 0000 0.4302    | 9999700000 | 0.500000000         | 501            |
| 0.7539600130      | 0000 0.0697    | 0000300000 | 0.0000000000        | 00000          |
| 0.2460399870      | 0000 0.9302    | 9999700000 | 0.0000000000        |                |
| 0.2332900020      | 0000 0.6685    | 1002000000 | 0.0000000000        |                |
| 0.7667099980      | 0000 0.3314    | 8998000000 | 0.0000000000        | 00000          |
| 0.2667099980      | 0000 0.1685    | 1002000000 | 0.5000000000        | 00000          |
| 0.7332900020      | 0000 0.8314    | 8998000000 | 0.500000000         | 00000          |
|                   |                |            |                     |                |
| INCAR:            |                |            |                     |                |
| LSORBIT = T       | -              |            |                     |                |
| LNONCOLLINEAR =   | т              |            |                     |                |
| SAXIS = 0 0 1     |                |            |                     | 0 7 00040 0    |
| MAGMOM= 0 0 /     | 0 0 - 7 0 0    | 700        | 0 0 -7 0            | 0 -7 300*0.0   |
| KDOTIMO.          |                |            |                     |                |
| NEDOTIME used for | n magnatia ana |            |                     |                |
| MAPOINTS used to  | r magnetic spa | ce group   |                     |                |
| 0                 |                |            |                     |                |
| 1ec               | 0 0000000      | 0 0000000  |                     | - M            |
| 0.50000000        | 0.50000000     | 0.50000000 | ) 10 !(             | רית<br>ס       |
| 0.5000000         | 0.50000000     | 0.0000000  | ) 10 !!             | 2              |
| 0.0000000         | 0.50000000     | 0 50000000 | , 1.0 !.<br>10 !"   | р<br>Г         |
| 0.50000000        | 0.0000000      | 0.50000000 | , 1.0 ! 1<br>10 ! 1 | L<br>T         |
| 0.5000000         | 0.00000000     | 0.0000000  | ) 10 !!             | ,<br>7         |
| 0.0000000         | 0.50000000     | 0.00000000 | ) 10 ! 1            |                |
| 0.0000000         | 0.00000000     | 0.00000000 | / T.O   ]           | L              |

0.50000000

0.00000000

0.00000000

! Z

1.0

We can get the standard POSCAR (POSCAR\_msg) and some setting parameters of INCAR and KPOINTS.

#### Then we do VASP calculations.
There is a big gap in the bottom 48 occupied band



#### "tqc.data"

...

| 58 8 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $1 \hspace{0.5mm}9 \hspace{0.5mm}9 \hspace{0.5mm}10 \hspace{0.5mm}10 \hspace{0.5mm}9 \hspace{0.5mm}10 \hspace{0.5mm}9 \hspace{0.5mm}10 $ |
| 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 9 9 10 10 10 10 9 9 10 10 9 9 9 9 10 10 10 9 9 10 9 10 10 10 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4 5 3 4 6 10 7 8 9 5 3 4 6 8 10 7 9 8 9 7 10 5 3 4 6 3 9 5 7 6 4 8 10 3 5 6 4 8 10 4 9 6 7 9 3 7 5 8 10 6 4 7 9 3 6 4 5 8 10 3 7 5 4 9 6 10 7 8 6 4 10 9 8 3 5 7 9 3 5 4 6 6 4 3 5 6 4 9 4 6 3 5 7 10 8 7 9 4 5 3 6 8 10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 3 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 5 3 4 6 5 3 6 4 7 8 910 10 8 9 7 10 9 8 7 3 4 5 6 7 9 6 8 5 4 10 3 6 4 5 3 3 5 4 6 8 10 4 7 9 3 6 5 6 4 8 10 3 5 7 9 4 6 7 9 3 5 8 10 7 9 8 10 7 6 9 4 3 8 5 10 7 9 4 7 6 9 8 10 7 9 10 4 6 7 9 8 3 5 8 7 910 10 9 8 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7 9 8 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6 3 4 3 4 4 3 3 4 4 3 3 4 3 4 3 3 4 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7 3 4 3 4 4 3 4 3 3 4 4 3 3 4 4 3 4 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8 3 4 3 4 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### Format of tqc.data

#SG (space group number) #nk (number of HSKPs) #nb (number of bands) HSKP#1 irrep(HSKP#1)#1 irrep(HSKP#1)#2 ... HSKP#2 irrep(HSKP#2)#1 irrep(HSKP#2)#2 ...

#### Back to the web: <a href="https://tm.iphy.ac.cn/TopMat\_1651msg.html">https://tm.iphy.ac.cn/TopMat\_1651msg.html</a>



4) Press cal\_SI button.

solve\_CR :

#### cal\_SI: trivial

The input data is calculated with spin-orbit coupling. Satisfy  $\ensuremath{\mathsf{CR}}$ 

The input data is calculated with spin-orbit coupling. Z2=0,

The gap at point  $\Gamma$  is only 4 meV, so it is very easy to achieve band inversion. We can simulate the band inversion at  $\Gamma$  by exchanging the 2 highest occupied states and 2 lowest empty bands.

#### After band inversion:

solve\_CR :

The input data is calculated with spin-orbit coupling. Satisfy CR

#### cal\_SI: topological

The input data is calculated with spin-orbit coupling. Z2=1,

## $3.1.2 \text{ Eu}_3 \text{In}_2 \text{As}_4 \text{-} \text{AFMb}$

- Here we take the magnetic material  $Eu_3In_2As_4$  (AFMb) as an examples to introduce how to calculate irreps to solve the CR and Sis to diagnose magnetic materials.
- We will use **mom2msg** to find  $Eu_3In_2As_4$  (AFMb) MSG.

The list of results of SG 58 Eu<sub>3</sub>In<sub>2</sub>As<sub>4</sub> given by TopMat

|                                                 | MSG(#OG) | Туре | Configuration | Energy(eV/atom) | SIs               |  |  |
|-------------------------------------------------|----------|------|---------------|-----------------|-------------------|--|--|
|                                                 | 471      | I    | AFMc          | -6.9430         | Z <sub>2</sub> =0 |  |  |
|                                                 | 472      | п    | NM            | ø               | ø                 |  |  |
|                                                 | 473      | ш    | ZM            | ø               | Ø                 |  |  |
|                                                 | 474      | ш    | ZM            | ø               | ø                 |  |  |
| Eu <sub>3</sub> In <sub>2</sub> As <sub>4</sub> | 475      | ш    | FMc           | -6.9427         | Nodal line        |  |  |
| SG58                                            |          |      | Canted-FM     | -6.9428         |                   |  |  |
|                                                 | 476      | ш    | FMa           | -6.9428         | Wevl points       |  |  |
|                                                 |          |      | FMb           | -6.9428         |                   |  |  |
|                                                 | 477      | Ш    | ZM            | ø               | Ø                 |  |  |

- 1) Prepare the original POSCAR file. ( $Eu_3In_2As_4$  as an example)
- 2) Add the magnetic configuration (Cart. coord.) in POSCAR as follows.

#### "POSCAR"

| AFMb                                    |                    |                    |
|-----------------------------------------|--------------------|--------------------|
| 1.0                                     |                    |                    |
| 6.82999992370000                        | 0.0000000000000000 | 0.0000000000000000 |
| 0.0000000000000000000000000000000000000 | 16.50670051570000  | 0.000000000000000  |
| 0.0000000000000000000000000000000000000 | 0.000000000000000  | 4.41020011900000   |
| Eu In As                                |                    |                    |
| 6 4 8                                   |                    |                    |
| Direct                                  |                    |                    |
| 0.0000000000000000000000000000000000000 | 0.50000000000000   | 0.00000000000000   |
| 0.500000000000000                       | 0.000000000000000  | 0.50000000000000   |
| 0.70820999100000                        | 0.69827002300000   | 0.00000000000000   |
| 0.29179000900000                        | 0.30172997700000   | 0.00000000000000   |
| 0.79179000900000                        | 0.19827002300000   | 0.50000000000000   |
| 0.20820999100000                        | 0.80172997700000   | 0.50000000000000   |
| 0.36037999400000                        | 0.58630001500000   | 0.50000000000000   |
| 0.63962000600000                        | 0.41369998500000   | 0.50000000000000   |
| 0.13962000600000                        | 0.08630001500000   | 0.00000000000000   |
| 0.86037999400000                        | 0.91369998500000   | 0.00000000000000   |
| 0.74603998700000                        | 0.56970000300000   | 0.50000000000000   |
| 0.25396001300000                        | 0.43029999700000   | 0.50000000000000   |
| 0.75396001300000                        | 0.06970000300000   | 0.00000000000000   |
| 0.24603998700000                        | 0.93029999700000   | 0.00000000000000   |
| 0.23329000200000                        | 0.66851002000000   | 0.00000000000000   |
| 0.76670999800000                        | 0.33148998000000   | 0.00000000000000   |
| 0.26670999800000                        | 0.16851002000000   | 0.50000000000000   |
| 0.73329000200000                        | 0.83148998000000   | 0.5000000000000    |

#### "POSCAR-add magnetic config"

| AFMb                                    |                                         |                                         |       |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------|
| 1.0                                     |                                         |                                         |       |
| 6.82999992370000                        | 0.0000000000000000000000000000000000000 | 0.000000000000000                       |       |
| 0.0000000000000000000000000000000000000 | 16.50670051570000                       | 0.000000000000000                       |       |
| 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 4.41020011900000                        |       |
| Eu In As                                |                                         |                                         |       |
| 6 4 8                                   |                                         |                                         |       |
| Direct                                  |                                         |                                         |       |
| 0.0000000000000000000000000000000000000 | 0.50000000000000                        | 0.000000000000000                       | 0 1 0 |
| 0.5000000000000000                      | 0.0000000000000000000000000000000000000 | 0.500000000000000                       | 0 -10 |
| 0.70820999100000                        | 0.69827002300000                        | 0.0000000000000000000000000000000000000 | 0 1 0 |
| 0.29179000900000                        | 0.30172997700000                        | 0.000000000000000                       | 0 1 0 |
| 0.79179000900000                        | 0.19827002300000                        | 0.500000000000000                       | 0 -10 |
| 0.20820999100000                        | 0.80172997700000                        | 0.500000000000000                       | 0 -10 |
| 0.36037999400000                        | 0.58630001500000                        | 0.500000000000000                       |       |
| 0.63962000600000                        | 0.41369998500000                        | 0.500000000000000                       |       |
| 0.13962000600000                        | 0.08630001500000                        | 0.000000000000000                       |       |
| 0.86037999400000                        | 0.91369998500000                        | 0.0000000000000000000000000000000000000 |       |
| 0.74603998700000                        | 0.56970000300000                        | 0.500000000000000                       |       |
| 0.25396001300000                        | 0.43029999700000                        | 0.500000000000000                       |       |
| 0.75396001300000                        | 0.06970000300000                        | 0.0000000000000000                      |       |
| 0.24603998700000                        | 0.93029999700000                        | 0.0000000000000000000000000000000000000 |       |
| 0.23329000200000                        | 0.66851002000000                        | 0.0000000000000000000000000000000000000 |       |
| 0.76670999800000                        | 0.33148998000000                        | 0.0000000000000000000000000000000000000 |       |
| 0.26670999800000                        | 0.16851002000000                        | 0.50000000000000                        |       |
| 0.7332900020000                         | 0.83148998000000                        | 0.50000000000000                        |       |
|                                         |                                         |                                         |       |

#### 1) \$ mom2msg > outdir

#### We give the MSG classification, number and all operations

| Crystalline SG(org.):<br>unitary part (only):<br>unitary +antiunitary:                                                                                                                                                  | Int.<br>Pnnm<br>P2_1/c<br>Pnnm                                                                                                                              | Sch.<br>D2h^12<br>C2h^5<br>D2h^12                                  | #SG<br>58<br>14<br>58 | #symm<br>8<br>4<br>8 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|----------------------|
| Magnetic SG type : Typ<br>Magnetic SG number (00<br>SG#B 14 0G( 58. 6.<br>He:<br>0.11000000 0.120000<br>0.61000000 0.380000<br>0.39000000 0.620000<br>0.11000000 0.120000<br>0.39000000 0.620000<br>0.39000000 0.620000 | De III (tran<br>G) : 476<br>476 )<br>000 0.15000<br>000 -0.15000<br>000 0.34999<br>000 0.65000<br>000 0.15000<br>000 -0.15000<br>000 0.34999<br>000 0.65000 | slationgle<br>001<br>001<br>999<br>001<br>001<br>001<br>999<br>001 | iche)                 |                      |

#### "msgout.txt"

###M ≡ G + AG, where M is a magnetic space group, G is its unitary part, and A is an antiunitary symmetry###

| #spg | _s yr | nm :  | 8        |   |
|------|-------|-------|----------|---|
| # 1  |       | unit  |          |   |
| 1    | 0     | 0     | 0.000000 |   |
| 0    | 1     | 0     | 0.000000 |   |
| 0    | 0     | 1     | 0.000000 |   |
| # 2  |       | unit  |          |   |
| -1   | 0     | 0     | 0.000000 |   |
| 0    | -1    | 0     | 0.000000 |   |
| 0    | 0 -   | -1    | 0.000000 |   |
| # 3  | é     | anti- | unit     |   |
| -1   | 0     | 0     | 0.000000 |   |
| 0    | -1    | 0     | 0.000000 |   |
| 0    | 0     | 1     | 0.000000 |   |
| # 4  | ē     | anti- | unit     |   |
| 1    | 0     | 0     | 0.000000 |   |
| 0    | 1     | 0     | 0.000000 |   |
| 0    | 0 -   | -1    | 0.000000 |   |
| # 5  |       | unit  |          |   |
| 1    | 0     | 0     | 0.500000 |   |
| 0    | -1    | 0     | 0.500000 |   |
| 0    | 0 -   | -1    | 0.500000 |   |
| # 6  |       | unit  |          |   |
| - 1  | 0     | 0     | 0.500000 |   |
| 0    | 1     | 0     | 0.500000 |   |
| 0    | 0     | 1     | 0.500000 |   |
| # 7  | é     | anti- | unit     |   |
| -1   | 0     | 0     | 0.500000 |   |
| 0    | 1     | 0     | 0.500000 |   |
| 0    | 0 -   | -1    | 0.500000 |   |
| # 8  | é     | anti- | unit     |   |
| 1    | 0     | 0     | 0.500000 |   |
| 0    | -1    | 0     | 0.500000 |   |
| 0    | 0     | 1     | 0.500000 |   |
| #sym | n ma  | ag,   | #symm:   | 8 |

Magnetic SG type : Type III (translationgleiche)

8

The crystalline space group is what the crystal has if the magnetic order is neglected. Once condidering magnetic order, the MSGs, magnetic type, and the symmetry-indicator classifications are given below. For each MSG, the detailed information is given in the corresponding MSG table.

| OG       | setting | BNS       | S setting | MSG type | Detailed Inf.              | integer spin     | half-integer spin |
|----------|---------|-----------|-----------|----------|----------------------------|------------------|-------------------|
| 58.1.471 | Pnnm    | Pnnm      | #58.393   | I        | Table MSG471               | $Z_2$            | $Z_2$             |
| 58.2.472 | Pnnm1'  | Pnnm1'    | #58.394   | II       | Table MSG472               | $Z_2$            | $Z_4$             |
| 58.3.473 | Pn'nm   | Pn'nm     | #58.395   | III      | Table MSG473               | Ø                | Ø                 |
| 58.4.474 | Pnnm'   | Pnnm'     | #58.396   | III      | Table MSG474               | Ø                | Ø                 |
| 58.5.475 | Pn'n'm  | Pn'n'm    | #58.397   | III      | Table MSG475               | $Z_2 \times Z_2$ | $Z_2 \times Z_2$  |
| 58.6.476 | Pnn'm'  | Pnn'm'    | #58.398   | III      | Table MSG476               | $Z_2$            | $Z_2$             |
| 58.7.477 | Pn'n'm' | Pn'n'm'   | #58.399   | III      | Table MSG477               | Ø                | Ø                 |
|          |         | $P_annm$  | #58.400   | IV       | OG <b>53</b> .12.426       |                  |                   |
|          |         | $P_cnnm$  | #58.401   | IV       | OG <b>55</b> .10.450       |                  |                   |
|          |         | $P_Bnnm$  | #58.402   | IV       | OG <mark>63</mark> .15.525 |                  |                   |
|          |         | $P_C nnm$ | #58.403   | IV       | OG <b>66</b> .11.574       |                  |                   |
|          |         | $P_I nnm$ | #58.404   | IV       | OG <b>71</b> .8.628        |                  |                   |

#### Open the web: <a href="https://tm.iphy.ac.cn/TopMat\_1651msg.html">https://tm.iphy.ac.cn/TopMat\_1651msg.html</a>

2 3) POS2MSG (converting PROSCAR to POSCAP may and initializing MAGMOM or #SG (1~230): 58 MSG (1~1651 🕻 476 (OG setting) (\* paste PPOSCAR Delow \* 6.82999992370000 0.000000000000000 16.50670051570000 0.00000000000000 4.41020011900000 Eu In As He 8 8 6 4 Direct 0.000000000000000 0.500000000000000 0.500000000000000 0.500000000000000 0.000000000000000 0.70820999100000 0.69827002300000 0.29179000900000 0.30172997700000 0.79179000900000 0.19827002300000 0.20820999100000 0.80172997700000 0.36037999400000 0.58630001500000 0.500000000000000 0.63962000600000 0.41369998500000 0.500000000000000 0.13962000600000 0.08630001500000 0.86037999400000 0.91369998500000 0.74603998700000 0.56970000300000 0.500000000000000 0.25396001300000 0.430299997000000.500000000000000 0.75396001300000 0.06970000300000 0.24603998700000 0.93029999700000 0.23329000200000 0.66851002000000 0.76670999800000 0.33148998000000 0.26670999800000 0.16851002000000 0.500000000000000 0.73329000200000 0.83148998000000 0.500000000000000 0.11000000 0.12000000 0.15000001 -0.11000000 -0.12000000 -0.15000001 0.61000000 0.38000000 0.34999999 0.39000000 0.62000000 0.65000001 -0.11000000 -0.12000000 0.15000001 0.11000000 0.12000000 -0.15000001 0.39000000 0.62000000 0.34999999 0.61000000 0.38000000 0.65000001

1) Give the unitary +antiunitary (SG) number: 58.

2) Give the MSG number: 476.

3) Paste POSCAR and additional He atoms into this box.

4) Press POS2MSG button.

POS2MSG

4

3)

| SG#B   | 14     | OG   | (   | 58    | .6.4  | 76)   | 1    | BNS  | (    |     | 5  | 8.3 | 98) |     |     |      |    |         |
|--------|--------|------|-----|-------|-------|-------|------|------|------|-----|----|-----|-----|-----|-----|------|----|---------|
| 1.0    |        |      |     |       |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| 0      | . 0000 | 000  | 000 | 0000  | -16   | .506  | 570  | 0515 | 570  | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 6      | . 8299 | 999  | 237 | 0000  | 0     | .000  | 000  | 0000 | 000  | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | . 0000 | 000  | 000 | 0000  | 16    | .506  | 570  | 0515 | 570  | 000 |    | 4.  | 410 | 200 | 119 | 000  | 00 |         |
| Eu     | In     | . 1  | As  | He    |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| 6      | 4      |      | 8   | 8     |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| Direct | t      |      |     |       |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| 0      | . 5000 | 000  | 000 | 0000  | 0     | .000  | 000  | 0000 | 000  | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | . 5000 | 000  | 000 | 0000  | 0     | . 500 | 000  | 0000 | 000  | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | .3017  | 299  | 770 | 0000  | 0     | .708  | 320  | 9991 | 100  | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | . 6982 | 700  | 230 | 0000  | 0     | . 291 | L791 | 0009 | 9000 | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | .3017  | 299  | 770 | 0000  | 0     | . 791 | L791 | 0009 | 9000 | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | . 6982 | 700  | 230 | 0000  | 0     | . 208 | 320  | 9991 | 100  | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | .9136  | 999  | 850 | 0000  | 0     | .360  | 037  | 9994 | 100  | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | .0863  | 000  | 150 | 0000  | 0     | . 639 | 9621 | 0006 | 5000 | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | .9136  | 999  | 850 | 0000  | 0     | .139  | 9621 | 0006 | 5000 | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | .0863  | 000  | 150 | 0000  | 0     | .860  | 037  | 9994 | 100  | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | . 9302 | 999  | 970 | 0000  | 0     | .746  | 503  | 9987 | 7000 | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | .0697  | 000  | 030 | 0000  | 0     | .253  | 396  | 0013 | 3000 | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | . 9302 | 999  | 970 | 0000  | 0     | .753  | 396  | 0013 | 3000 | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | .0697  | 000  | 030 | 0000  | 0     | .246  | 503  | 9987 | 7000 | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | . 3314 | 899  | 800 | 0000  | 0     | .233  | 329  | 0002 | 2000 | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | . 6685 | 100  | 200 | 0000  | 0     | .766  | 570  | 9998 | 800  | 000 |    | Ο.  | 000 | 000 | 000 | 0000 | 00 |         |
| 0      | . 3314 | 899  | 800 | 0000  | 0     | .266  | 570  | 9998 | 8000 | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | . 6685 | 100  | 200 | 0000  | 0     | .733  | 329  | 0002 | 2000 | 000 |    | Ο.  | 500 | 000 | 000 | 0000 | 00 |         |
| 0      | .0300  | 000  | 100 | 0000  | 0     | .110  | 000  | 0000 | 000  | 000 |    | Ο.  | 150 | 000 | 010 | 0000 | 00 |         |
| 0      | . 9699 | 999  | 900 | 0000  | 0     | . 890 | 000  | 0000 | 000  | 000 |    | Ο.  | 849 | 999 | 990 | 0000 | 00 |         |
| 0      | . 9699 | 999  | 900 | 0000  | 0     | . 610 | 000  | 0000 | 000  | 000 |    | Ο.  | 349 | 999 | 990 | 0000 | 00 |         |
| 0      | .0300  | 000  | 100 | 0000  | 0     | . 390 | 000  | 0000 | 000  | 000 |    | Ο.  | 650 | 000 | 010 | 0000 | 00 |         |
| 0      | .2700  | 000  | 100 | 0000  | 0     | . 890 | 000  | 0000 | 000  | 000 |    | Ο.  | 150 | 000 | 010 | 0000 | 00 |         |
| 0      | . 7299 | 999  | 900 | 0000  | 0     | .110  | 000  | 0000 | 000  | 000 |    | Ο.  | 849 | 999 | 990 | 0000 | 00 |         |
| 0      | .7299  | 999  | 900 | 0000  | 0     | . 390 | 000  | 0000 | 000  | 000 |    | Ο.  | 349 | 999 | 990 | 0000 | 00 |         |
| 0      | .2700  | 000  | 100 | 0000  | 0     | . 610 | 000  | 0000 | 000  | 000 |    | Ο.  | 650 | 000 | 010 | 0000 | 00 |         |
|        |        |      |     |       |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| INCAR  | :      | -    |     |       |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| LSORD. |        | T    |     |       |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| LNONCO | JLLIN  | EAR  | = . | r     |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| SALIS  | = 0    | U I  | ~   |       |       | -     | -    | ~    | -    | -   | ~  | -   | -   | ~   | -   | -    | ~  | 20040 0 |
| MAGMO  | M= /   | '    | U   | / -/  | U     | 1     | '    | U    | '    | '   | U  | '   | -/  | U   | '   | -/   | U  | 300*0.0 |
| RPOTN  | rs.    |      |     |       |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| MEDOTI | UTC 11 | ead  | fo  | r mag | meti  |       |      |      | 011  |     |    |     |     |     |     |      |    |         |
| 8      |        | Scu  | 10  | r mag | neer  | 5 SF  | Juci | g gi | ւսպ  | ×   |    |     |     |     |     |      |    |         |
| rec    |        |      |     |       |       |       |      |      |      |     |    |     |     |     |     |      |    |         |
| 100    | 5000   | 000  | 0   | 0 0   | 0000  | nnn   |      | 0 5  | 500  | 000 | 00 |     | 1 0 |     |     | ۸    |    |         |
| 0      | 0000   | 0000 | 0   | 0.0   | 00000 | 000   |      | 0.5  | 500  |     | 00 |     | 1 0 |     | ÷   | R    |    |         |
| 0      | 5000   | 000  | n   | 0.5   | 00000 | 000   |      | 0.0  | 000  |     | 00 |     | 1 0 |     | ÷   | č    |    |         |
| 0      | . 0000 | 000  | ñ   | 0.5   | 00000 | 000   |      | 0.0  | 5000 | 000 | 00 |     | 1 0 |     |     | Ď    |    |         |
| 0      | 5000   | 000  | ñ   | 0.5   | 0000  | 000   |      | 0.5  | 5000 |     | nn |     | 1.0 |     | 1   | R    |    |         |
| 0      | 0000   | 000  | ñ   | 0.0   | nnnn  | 000   |      | 0.0  | 100  |     | nn |     | 1 0 |     | i   | GM   |    |         |
| 0      | 5000   | 000  | ñ   | 0.0   | 0000  | 000   |      | 0.0  | 100  |     | 00 |     | 1 0 |     |     | Y    |    |         |
| 0      | 0000   | 000  | ñ   | 0.5   | 00000 | nnn   |      | 0.0  | 100  |     | nn |     | 1 0 |     | i   | 2    |    |         |

Note that the He atom is only to find the correct MSG.

The magnetic moment given by the website is a possible configuration. Our initial magnetic moment also satisfies this possible configuration.

| TRUE  |  |
|-------|--|
| INCAR |  |

POSCAR msg:

| INCAR:    |      |   |     |      |     |   |   |   |   |   |      |   |      |             |
|-----------|------|---|-----|------|-----|---|---|---|---|---|------|---|------|-------------|
| LSORBIT = | Т    |   |     |      |     |   |   |   |   |   |      |   |      |             |
| LNONCOLLI | NEAR | = | Т   |      |     |   |   |   |   |   |      |   |      |             |
| SAXIS = 0 | 0 1  |   |     |      |     |   |   |   |   |   |      |   |      |             |
| MAGMOM= 0 | 7    | 0 | 0 - | -7 ( | 0 0 | 7 | 0 | 0 | 7 | 0 | 0 -7 | 0 | 0 -7 | 0 300*0.0 … |
|           |      |   |     |      |     |   |   |   |   |   |      |   |      |             |

| POSCA | R_msg: |      |       |      |        |       |    |       |    |       |      |      |      |
|-------|--------|------|-------|------|--------|-------|----|-------|----|-------|------|------|------|
| SG#B  | 14     | OG   | (     | 58.0 | 6.476) | BN    | IS | (     | 58 | .398) |      |      |      |
| 1.0   |        |      |       |      |        |       |    |       |    |       |      |      |      |
| 0     | .00000 | 0000 | 00000 | 00 - | -16.50 | 67005 | 15 | 70000 |    | 0.000 | 0000 | 0000 | 0000 |
| 6     | .82999 | 9992 | 23700 | 00   | 0.00   | 00000 | 00 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .00000 | 0000 | 00000 | 00   | 16.50  | 67005 | 15 | 70000 |    | 4.410 | 2001 | 1900 | 0000 |
| Eu    | In     | A    | s     |      |        |       |    |       |    |       |      |      |      |
| 6     | 4      |      | 8     |      |        |       |    |       |    |       |      |      |      |
| Direc | t      |      |       |      |        |       |    |       |    |       |      |      |      |
| 0     | .50000 | 0000 | 00000 | 00   | 0.00   | 00000 | 00 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .50000 | 0000 | 00000 | 00   | 0.50   | 00000 | 00 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |
| 0     | .30172 | 2997 | 7000  | 00   | 0.70   | 82099 | 91 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .6982  | 7002 | 23000 | 00   | 0.29   | 17900 | 09 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .30172 | 2997 | 7000  | 00   | 0.79   | 17900 | 09 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |
| 0     | .6982  | 7002 | 23000 | 00   | 0.20   | 82099 | 91 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |
| 0     | .91369 | 9998 | 35000 | 00   | 0.36   | 03799 | 94 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |
| 0     | .08630 | 0001 | 5000  | 00   | 0.63   | 96200 | 06 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |
| 0     | .91369 | 9998 | 35000 | 00   | 0.13   | 96200 | 06 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .08630 | 0001 | 5000  | 00   | 0.86   | 03799 | 94 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .93029 | 9999 | 7000  | 00   | 0.74   | 60399 | 87 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |
| 0     | .06970 | 0000 | 3000  | 00   | 0.25   | 39600 | 13 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |
| 0     | .93029 | 9999 | 7000  | 00   | 0.75   | 39600 | 13 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .06970 | 0000 | 3000  | 00   | 0.24   | 60399 | 87 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .33148 | 8998 | 80000 | 00   | 0.23   | 32900 | 02 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .66851 | 1002 | 20000 | 00   | 0.76   | 67099 | 98 | 00000 |    | 0.000 | 0000 | 0000 | 0000 |
| 0     | .33148 | 8998 | 80000 | 00   | 0.26   | 67099 | 98 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |
| 0     | .66851 | 1002 | 20000 | 00   | 0.73   | 32900 | 02 | 00000 |    | 0.500 | 0000 | 0000 | 0000 |

We can get the standard POSCAR (POSCAR\_msg) and some setting parameters of INCAR and KPOINTS.

INCAR: LSORBIT = TLNONCOLLINEAR = T SAXIS = 0 0 1MAGMOM= 0 7 0 -7 0 -7 0 0 -7 0 300\*0.0 ... 0 0 0 0 0 0 **KPOINTS:** MKPOINTS used for magnetic space group 8 rec 0.50000000 0.00000000 0.50000000 1.0 ! A 0.00000000 0.00000000 0.50000000 1.0 ! B 0.50000000 0.50000000 0.00000000 ! C 1.0 0.00000000 0.50000000 0.50000000 1.0 ! D 0.50000000 0.50000000 0.50000000 ! E 1.0 0.00000000 0.00000000 0.00000000 ! GM 1.0

1.0

1.0

! Y

! Z

0.00000000

0.00000000

0.00000000

0.50000000

0.50000000

0.00000000

Then we do VASP calculations (REMOVING He atoms).

We use unitary part (SG#B) to calculate the representation

#### \$ irvsp - §g 14 - nb 49 154 \$ vim tqc.data

#### "tqc.data"

...

| 14 8 106<br>1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   |
|-------------------------------------------------------|
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2               |
| 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2               |
| 8<br>556567878787856567878565656565656787878567856    |
| 6<br>6                                                |
| 05050/8/85005/88/50/850/850/85050508//885/0/8/805/805 |
| 7565678785656787878787856565678567856785              |
| 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2               |

#### Format of tqc.data

#SG (space group number) #nk (number of HSKPs) #nb (number of bands) HSKP#1 irrep(HSKP#1)#1 irrep(HSKP#1)#2 ... HSKP#2 irrep(HSKP#2)#1 irrep(HSKP#2)#2 ...

#### Back to the web: <a href="https://tm.iphy.ac.cn/TopMat\_1651msg.html">https://tm.iphy.ac.cn/TopMat\_1651msg.html</a>



- 3) Press solve\_CR button.
- 4) Press cal\_SI button.

solve\_CR :

The input data is calculated with spin-orbit coupling. Satisfy  $\ensuremath{\mathsf{CR}}$ 

cal\_SI :

The input data is calculated with spin-orbit coupling. Z2=0,



### 3.2 SnTe



www.topologicalquantumchemistry.com/#/detail/601065y.com

- 1) Prepare the original POSCAR file. (SnTe as an example)
- 2) \$ phonopy --tolerance 0.01 --symmetry -c POSCAR\$ vim PPOSCAR

#### "POSCAR"

| Sn Te<br>1 00000000000000000000         |                                         |                                         |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| 6.30100000000000002                     | 0.00000000000000                        | 00 0.0000000000000000000000000000000000 |
| 0.000000000000000000                    | 6.30100000000000                        | 02 0.0000000000000000                   |
| 0.000000000000000000                    | 0.00000000000000                        | 00 6.301000000000002                    |
| Sn Te                                   |                                         |                                         |
| 4 4                                     |                                         |                                         |
| Cartesian                               |                                         |                                         |
| 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.00000000000000000                     |
| 0.00000000000000 3.                     | 1505000000000001                        | 3.1505000000000001                      |
| 3.150500000000000 0.0                   | 000000000000000000000000000000000000000 | 3.1505000000000001                      |
| 3.150500000000001 3.1                   | 1505000000000001                        | 0.00000000000000000                     |
| 3.150500000000001 3.1                   | 1505000000000001                        | 3.1505000000000001                      |
| 3.150500000000001 0.0                   | 000000000000000000000000000000000000000 | 0.0000000000000000                      |
| 0.00000000000000 3.1                    | 1505000000000001                        | 0.0000000000000000000000000000000000000 |
| 0.0000000000000000000000.0              | 000000000000000000000000000000000000000 | 3.150500000000001                       |

phonopy\_version: '2.20.0' space\_group\_type: 'Fm-3m' space\_group\_number: 225 point\_group\_type: 'm-3m'

#### "PPOSCAR"

| generated by phonopy |                                         |                                         |
|----------------------|-----------------------------------------|-----------------------------------------|
| 1.0                  |                                         |                                         |
| 0.0000000000000000   | 3.15049999999999996                     | 3.15049999999999996                     |
| 3.1504999999999996   | 0.0000000000000000000000000000000000000 | 3.15049999999999996                     |
| 3.15049999999999996  | 3.15049999999999996                     | 0.0000000000000000000000000000000000000 |
| Sn Te                |                                         |                                         |
| 1 1                  |                                         |                                         |
| Direct               |                                         |                                         |
| 0.00000000000000 0.  | 0.0 0000000000000 0.0                   | 000000000000000000000000000000000000000 |
| 0.50000000000000 0.  | 500000000000000 0.5                     | 00000000000000                          |

Open the web: https://tm.iphy.ac.cn/TopMat\_1651msg.html



1) Give the correct space group (SG) number: 58.

2) Give any reasonable magnetic space group (MSG) number, such as 1.

3) Paste PPOSCAR into this box.

4) Press POS2MSG button.

The OG magnetic space group number do not match with the given space group number. Possible OG magnetic space group numbers are given below:

1618, type 1 1619, type 2 1620, type 3 1621, type 3 1622, type 3

Nonmagnetic materials are the type-2 MSG.

Back to the web: https://tm.iphy.ac.cn/TopMat\_1651msg.html



1) Give the correct space group (SG) number: 58.

2) Give the correct magnetic space group (MSG) number: 1619.

3) Paste PPOSCAR into this box.

4) Press POS2MSG button.

| POSCAR_msg:   |       |         |          |      |        |      |              |            |
|---------------|-------|---------|----------|------|--------|------|--------------|------------|
| SG#B 225 00   | ) ( 2 | 225.2.1 | .619)    | BNS  | (      | 225. | 117)         |            |
| 1.0           |       |         |          |      |        |      |              |            |
| 0.000000      | 00000 | 000     | 3.15050  | 0000 | 00000  | 3    | .1505000     | 0000000    |
| 3.1505000     | 00000 | 000     | 0.00000  | 0000 | 00000  | 3    | .1505000     | 0000000    |
| 3.1505000     | 00000 | 000     | 3.15050  | 0000 | 00000  | 0    | .0000000     | 0000000    |
| Sn Te         |       |         |          |      |        |      |              |            |
| 1 1           |       |         |          |      |        |      |              |            |
| Direct        |       |         |          |      |        |      |              |            |
| 0.000000      | 00000 | 000     | 0.00000  | 0000 | 00000  | 0    | .0000000     | 0000000    |
| 0.500000      | 00000 | 000     | 0.50000  | 0000 | 00000  | 0    | .5000000     | 0000000    |
|               |       |         |          |      |        |      |              |            |
| INCAR:        |       |         |          |      |        |      |              |            |
| LSORBIT = T   |       |         |          |      |        |      |              |            |
| LNONCOLLINEAF | с = т |         |          |      |        |      |              |            |
| SAXIS = 0 0 1 |       |         |          |      |        |      |              |            |
| MAGMOM=300*0. | 0     |         |          |      |        |      |              |            |
|               | -     |         |          |      |        |      |              |            |
| KPOINTS:      |       |         |          |      |        |      |              |            |
| MKPOINTS used | for   | magnet  | ic space | e ar | aup    |      |              |            |
| 4             |       | magnee  | Lo opue  | e gr | oup    |      |              |            |
| rec           |       |         |          |      |        |      |              |            |
| 0 000000      | 0     | 0 0000  | 0000     | 0 0  | 000000 | 0    | 1 0          | GM         |
| 0 5000000     | 0     | 0 0000  | 0000     | 0.5  | 000000 | 0    | 1 0          | I X        |
| 0 5000000     | 0     | 0 5000  | 0000     | 0.5  | 000000 | 0    | 1 0          | . т.       |
| 0 5000000     | 0     | 0 2500  | 0000     | 0 7  | 500000 | 0    | 1 0          | . <u>.</u> |
| 0.000000      | •     | 0.2000  |          | v.,  | 00000  | · ·  | <b>1</b> . V |            |

We can get the standard POSCAR (POSCAR\_msg) and some setting parameters of INCAR and KPOINTS.

#### Then we do VASP calculations.

The number of valence electrons in SnTe is 10



#### "tqc.data"

...

225 4 10 1 11 11 13 16 2 11 11 13 13 14 3 12 11 11 7 8 12 5 6 7 7 6 7

#### Format of tqc.data

#SG (space group number) #nk (number of HSKPs) #nb (number of bands) HSKP#1 irrep(HSKP#1)#1 irrep(HSKP#1)#2 ... HSKP#2 irrep(HSKP#2)#1 irrep(HSKP#2)#2 ...

#### Back to the web: https://tm.iphy.ac.cn/TopMat\_1651msg.html



- 1) Paste tqc.data into this box.
- 2) Give the MSG number: 1619.
- 3) Press solve\_CR button.
- 4) Press cal\_SI button.

| Compound: | Symmetry Group: | Topological Status (Type): | Topological indices:                                                  |
|-----------|-----------------|----------------------------|-----------------------------------------------------------------------|
| Sn1 Te1   | 225 (Fm-3m)     | TI (SEBR)                  | $Z_{2w,1} = 0, Z_{2w,2} = 0, Z_{2w,3} = 0, Z_4 = 0, Z_2 = 0, Z_8 = 4$ |

solve\_CR :

The input data is calculated with spin-orbit coupling. Satisfy  $\ensuremath{\mathsf{CR}}$ 

cal\_SI :

The input data is calculated with spin-orbit coupling.  $\tt Z8=4\,,$ 

Consistent with the topology indices on the website



# 4 Calculate the phonon BRs by Quantum Espresso (QE)

• Here we take the BAs as an examples to introduce how to calculate phonon irreps to solve ABR decompositions to diagnose topological /unconventional materials.



https://legacy.materialsproject.org/materials/mp-10044/

- 1) Prepare the original POSCAR file. (BAs as an example)
- 2) \$ phonopy --tolerance 0.01 --symmetry -c POSCAR\$ vim PPOSCAR

#### "POSCAR"

| qe relaxed  |             |            |              |
|-------------|-------------|------------|--------------|
| 1.0         |             |            |              |
| 0.000000000 | 2.372094494 | 2.37209449 | 4            |
| 2.372094494 | 0.000000000 | 2.37209449 | 4            |
| 2.372094494 | 2.372094494 | -0.0000000 | 00           |
| B As        |             |            |              |
| 11          |             |            |              |
| Direct      |             |            |              |
| 0.000000    | 0000 0.000  | 0000000    | 0.0000000000 |
| 0.2500000   | 000 0.250   | 0000000    | 0.2500000000 |

#### "PPOSCAR"

| generated by phonopy                                     |
|----------------------------------------------------------|
| 1.0                                                      |
| 0.00000000000000 2.3720944940000002 2.3720944940000002   |
| 2.3720944940000002 0.000000000000000 2.3720944940000002  |
| 2.3720944940000002 2.3720944940000002 0.0000000000000000 |
| B As                                                     |
| 1 1                                                      |
| Direct                                                   |
| 0.000000000000000 0.00000000000000 0.000000              |
| 0.75000000000000 0.75000000000000 0.750000000000         |

Open the web: https://tm.iphy.ac.cn/UnconvMat.html

3) POS2ABR > ABR.out (converting PPOSCAR to POSCAR std and generating ABRs) (\* paste PPOSCAR below or download the source code \*)

```
generated by phonopy
1)
      1.0
        2.3720944940000002
                                         2.3720944940000002
        2.3720944940000002
                        2.3720944940000002
        2.3720944940000002
                        2.3720944940000002
                                         B As
          1
    Direct
      0.000000000000000000
                                    0.7500000000000000
      0.75000000000000000
                     0.750000000000000000
     POS2AB
```

1) Paste PPOSCAR into this box.

2) Press POS2ABR button.

2)

We can get the standard POSCAR (POSCAR\_std) and the space group number of BAs is 216.

Copy the content in the red box to POSCAR. (Convert to QE input)

| POSCAR_std :                            |               |                |                                         |
|-----------------------------------------|---------------|----------------|-----------------------------------------|
| SG 216 0.000 0.000                      | 0.000 :Genera | ted by pos2aBR | for irvsp!                              |
| 1.0                                     |               |                |                                         |
| 0.0000000000000000000000000000000000000 | 00 2.37209    | 44940000002    | 2.372094494000000                       |
| 2.37209449400000                        | 02 0.00000    | 00000000000    | 2.372094494000000                       |
| 2.37209449400000                        | 02 2.37209    | 44940000002    | 0.0000000000000000000000000000000000000 |
| B As                                    |               |                |                                         |
| 1 1                                     |               |                |                                         |
| Direct                                  |               |                |                                         |
| 0.0000000000000000000000000000000000000 | 0.0000000000  | 00000 0.00000  | 0000000000                              |
| 0.75000000000000000                     | 0.75000000000 | 00000 0.75000  | 0000000000                              |
|                                         |               |                |                                         |

Note: When we diagnose whether the band structure of a material is unconventional, we only need to calculate irreps at several maximal HSKPs.

All space groups' HSKPs can be found on: https://github.com/zjwang11/IR2PW/lib\_ir rep\_bcs/max\_KPOINTS\_VASP/

First, do scf QE calculations. Second, use **IRphx.sh** to do phonon calculation of the HSKPs. "KPOINTS\_216.txt"

| k-<br>∠ | -points<br>1 |            |            |     |
|---------|--------------|------------|------------|-----|
| re      | С            |            |            |     |
|         | 0.00000000   | 0.00000000 | 0.00000000 | 1.0 |
|         | 0.50000000   | 0.00000000 | 0.50000000 | 1.0 |
|         | 0.50000000   | 0.50000000 | 0.50000000 | 1.0 |
|         | 0.50000000   | 0.25000000 | 0.75000000 | 1.0 |

tbbox.in for BAs:

case = ph ! ph for ir2ph; lda/soc for ir2tb proj: orbt = 1 ! 1 for px py pz; 2 for pz px py ntau = 2 ! number of atoms 0.000000 0.000000 0.000000 1 3 0.750000 0.750000 0.750000 2 3 iorbit ! x1, x2, x3, itau. ! (fraction coordinates) (kinds of atoms) (number of orbitals) end projections

#### kpoint:

kmesh = 1 ! calculate BRs set 1 ! number of k-points Nk = 40.00000000 0.00000000 0.00000000 ! k1, k2, k3 0.50000000 0.00000000 0.50000000 0.50000000 0.50000000 0.50000000 0.25000000 0.50000000 0.75000000 end kpoint\_path

### Step 5

Generate tbbox.in using the scf output file of QE \$ pwscf2tbbox.sh 216

Note that the phonon vibration is similar to the p orbital (px py pz). The symmetric operation of QE is converted into the VASP format.

#### unit\_cell:

#### ! Lattice constant and Reciprocal lattice vector 0.000000 0.707107 0.707107 -0.7071070.707107 0.707107 0.707107 0.000000 0.707107 0.707107 -0.707107 0.707107 -0.707107 0.707107 0.707107 0.000000 0.707107 0.707107 ! same as OUTCAR: det(A) alpha ! irot n\_x n\_y n\_z tau\_x tau\_y tau\_z 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 -180.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 3 1.000000 -180.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000

...

end unit\_cell\_cart

All dynamic matrices are collected and converted to readable ph\_wf.dat. (4 HSKPs)

\$ pythondyn2wf.py 4
\$ ir2ph -sg 216 -nb 1 3 > outir
\$ vim tqc.data



Note that the gap of phonons can be understood as well-separated phonon modes. We can diagnose topological /unconventional at any well-separated phonon modes.

#### "tqc.data"

| 216 |   | Z | 1 | 6 |   |   |
|-----|---|---|---|---|---|---|
| 1   | 4 | 4 |   |   |   |   |
| 2   | 5 | 1 | 5 | 3 |   |   |
| 3   | 3 | 1 | 3 | 1 |   |   |
| 6   | 4 | 2 | 1 | 3 | 2 | 4 |

#### Format of tqc.data

. . .

#SG (space group number) #nk (number of HSKPs) #nb (number of bands) HSKP#1 irrep(HSKP#1)#1 irrep(HSKP#1)#2 ... HSKP#2 irrep(HSKP#2)#1 irrep(HSKP#2)#2 ...

Open the web: <u>https://tm.iphy.ac.cn/UnconvMat.html</u>

1) (\* paste toc data below \*) 216 4 3 1 4 2 5 1 3 3 1 6 4 2 1 Note: please fill in both boxes above! (BR\_decomp) ABR\_decomp (only valid without spin-orbit coupling) solve\_CR

6) solve EBR and ABR decompositions (using tqc.data and PPOSCAR).

1) Paste tqc.data into this box.

2) Press EBR\_decomp button.

3) Press ABR\_decomp button.

#### 2) Press EBR\_decomp button.

| There | are 1               | solutions     | for e | BR | dec | omposition. |
|-------|---------------------|---------------|-------|----|-----|-------------|
|       | 1                   |               |       |    |     |             |
| 1     | 106                 | A1@4d         | (     | 1) | :   | 0;          |
| 2     | 2@6                 | A2@4d         | (     | 1) | :   | 0;          |
| 3     | 306                 | E@4d          | (     | 1) | :   | 0;          |
| 4     | <b>4</b> @6         | T2@4d         | (     | 1) | :   | 1;          |
| 5     | 5@6                 | <b>T1@4d</b>  | (     | 1) | :   | 0;          |
| 6     | 107                 | A1@4c         | (     | 1) | :   | 0;          |
| 7     | 2@7                 | A2@4c         | (     | 1) | :   | 0;          |
| 8     | 3@7                 | E@4c          | (     | 1) | :   | 0;          |
| 9     | <b>4</b> @7         | T2@4c         | (     | 1) | :   | 0;          |
| 10    | 5@7                 | <b>T1@4c</b>  | (     | 1) | :   | 0;          |
| 11    | 108                 | A1@4b         | (     | 1) | :   | 0;          |
| 12    | 208                 | A2@4b         | (     | 1) | :   | 0;          |
| 13    | 3@8                 | E@4b          | (     | 1) | :   | 0;          |
| 14    | <b>4</b> @8         | <b>Т2@4</b> Ь | (     | 1) | :   | 0;          |
| 15    | 5@8                 | т1@4ь         | (     | 1) | :   | 0;          |
| 16    | 109                 | A1@4a         | (     | 1) | :   | 0;          |
| 17    | 2@9                 | A2@4a         | (     | 1) | :   | 0;          |
| 18    | 3@9                 | <b>E@4a</b>   | (     | 1) | :   | 0;          |
| 19    | <b>4</b> @ <b>9</b> | <b>T2@4a</b>  | (     | 1) | :   | 0;          |
| 20    | 5@9                 | <b>T1@4a</b>  | (     | 1) | :   | 0;          |

topologically trivial

Step 9

216 F-43m

3) Press ABR\_decomp button.

The irreps induced by atomic-orbital

Note that if there is no ABR for the p-orbital, we can add some atoms in the same Wyckoff Positions. (Including porbitals)

| 11 |       |              |      |         |     |          |         |   |                |
|----|-------|--------------|------|---------|-----|----------|---------|---|----------------|
| SN | Mult. | Wyck.        | Atom | S       | p d | Wyck.    | Name    |   |                |
| 1  | L 1   | 9            | 5    | 2       | 1 0 | 4a       | в       |   |                |
| 1  | 21    | 6            | 33   | 2       | 3 0 | 4d       | As      |   |                |
|    |       |              |      |         |     |          |         |   |                |
| SN | Orb.  | 0 Site       |      | Symm.   |     | BCS C    | JB MUL  |   |                |
| 1  | B-s   | @ <b>4a(</b> | 9) - | 43m(31) | >>> | (1) (2   | 2) (3)  |   | Basis          |
|    |       |              |      |         | 1   | GM1 ; GN | M1 ; A1 | ; | x2+y2+z2       |
| 1  | В-р   | @ <b>4a(</b> | 9) - | 43m(31) | >>> | (1) (2   | 2) (3)  |   | Basis          |
|    |       |              |      |         | 4   | GM4 ; GN | м5 ; т2 | ; | x,y,z;xy,xz,yz |
| 2  | As-s  | @ 4d(        | 6) - | 43m(31) | >>> | (1) (2   | 2) (3)  |   | Basis          |
|    |       |              |      |         | 1   | GM1 ; GN | M1 ; A1 | ; | x2+y2+z2       |
| 2  | As-p  | @ 4d(        | 6) - | 43m(31) | >>> | (1) (2   | 2) (3)  |   | Basis          |
|    | -     |              |      |         | 4   | GM4 ; GM | м5 ; т2 | ; | x,y,z;xy,xz,yz |

Atomic insulator

There are 1 solutions for eBR decomposition.

| There | are 1 so            | lutions fo   | or a | BR | dec | ompos | ition. |
|-------|---------------------|--------------|------|----|-----|-------|--------|
| It is | an atomi            | c insulate   | or.  |    |     | 1     |        |
| 1     | 1@9                 | A1@4a        | (    | 1) | :   | 0;    |        |
| 2     | <b>4</b> @ <b>9</b> | <b>T2@4a</b> | (    | 1) | :   | 0;    |        |
| 3     | 106                 | A1@4d        | (    | 1) | :   | 0;    |        |
| 4     | <b>4</b> @ <b>6</b> | T2@4d        | (    | 1) | :   | 1;    |        |
|       |                     |              |      |    |     |       |        |

### 5 Solve CR and calculate SI by IR2TB

 Here we take the topological material Bi<sub>2</sub>Se<sub>3</sub> as examples to introduce how to calculate TB Hamiltonian irreps to solve EBR decompositions and the compatibility relationship (CR) and symmetry indicators (SIs) to diagnose topological materials. Band structure for Bi<sub>2</sub>Se<sub>3</sub> with SOC



Nature Physics volume 5, pages438–442 (2009)

- 1) Prepare the original POSCAR file. (Bi<sub>2</sub>Se<sub>3</sub> as an example)
- 2) \$ phonopy --tolerance 0.01 --symmetry -c POSCAR\$ vim PPOSCAR

"POSCAR"

| Bi2 Se3                                                        |
|----------------------------------------------------------------|
| 2.0669999122654712 1.1933829557614029 9.5433330536000032       |
| -2.0669999122654712 1.1933829557614029 9.5433330536000032      |
| 0.00000000000000 -2.3867659115228057 9.5433330536000032        |
| Bi Se                                                          |
| 2 3                                                            |
| Direct                                                         |
| 0.3980000423333330 0.3980000423333330 0.3980000423333331       |
| 0.60199995766666670 $0.60199995766666670$ $0.6019999576666668$ |
| 0.000000000000000 0.00000000000000 0.000000                    |
| 0.791999993999998 0.791999993999998 0.791999993999998          |
| 0.20800006000003 0.20800006000003 0.20800006000003             |

#### "PPOSCAR"

| generated by phonopy<br>1.0             |                                          |
|-----------------------------------------|------------------------------------------|
| 2.0669999122654712                      | 1.1933829557614026 9.5433330536000014    |
| -2.066999912265471                      | 2 1.1933829557614026 9.5433330536000014  |
| -0.0000000000000000                     | 1 -2.3867659115228053 9.5433330536000014 |
| Bi Se                                   |                                          |
| 2 3                                     |                                          |
| Direct                                  |                                          |
| 0.3980000423333330                      | 0.3980000423333333 0.3980000423333333    |
| 0.6019999576666670                      | 0.60199995766666669 0.60199995766666670  |
| 0.0000000000000000000000000000000000000 | 0.00000000000000 0.00000000000000        |
| 0.7919999939999998                      | 0.7919999940000000 0.7919999940000000    |
| 0 208000006000002                       | 0 20800006000005 0 20800006000004        |

phonopy\_version: '2.20.0'

space\_group\_type: 'R-3m'
space\_group\_number: 166
point\_group\_type: '-3m'

Open the web:<u>https://tm.iphy.ac.cn/TopMat\_1651msg.html</u>

|    | 3) POS2MSG (converting PPOSCAR to POSCAR_msg and initializing M                                                                                                                                      | IAGMOM on magnetic atoms)                                               |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
|    | #SG (1~230). 466 #MSG (1~1651). 40G setting)                                                                                                                                                         |                                                                         |  |  |
| 2) | (* paste PPOSCAR below *)                                                                                                                                                                            |                                                                         |  |  |
| 3) | generated by phonopy<br>1.0                                                                                                                                                                          | 1) Give the group number(SG) from phonopy: 166.                         |  |  |
|    | 2.0669999122654712 1.1933829557614026 9.5433330536000014<br>-2.0669999122654712 1.1933829557614026 9.5433330536000014<br>-0.00000000000000001 -2.3867659115228053 9.5433330536000014<br>Bi Se<br>2 3 | 2) Give any reasonable magnetic space group<br>(MSG) number, such as 1. |  |  |
|    | Direct<br>0.3980000423333330 0.3980000423333333 0.3980000423333333<br>0.60199995766666670 0.60199995766666669 0.60199995766666670<br>0.000000000000000 0.0000000000000 0.000000                      | 3) Paste PPOSCAR into this box.                                         |  |  |
|    | 0.791999993999998 0.791999994000000 0.7919999940000000<br>0.208000006000002 0.208000060000005 0.2080000060000004                                                                                     | 4) Press POS2MSG button.                                                |  |  |
|    |                                                                                                                                                                                                      |                                                                         |  |  |

4)

POS2MSG

The OG magnetic space group number do not match with the given space group number. Possible OG magnetic space group numbers are given below:

| 1327, | type | 1 |
|-------|------|---|
| 1328, | type | 2 |
| 1329, | type | 3 |
| 1330, | type | 3 |
| 1331, | type | 3 |
| 1332, | type | 4 |
| 1333, | type | 4 |

Nonmagnetic materials are the type-2 MSGs, which include time inversion operation.
Back to the web: https://tm.iphy.ac.cn/TopMat 1651msg.html



1) Give the correct space group (SG) number: 166.

2) Give the correct magnetic space group(MSG) number: 1328.

3) Paste PPOSCAR into this box.

4) Press POS2MSG button.

| ar msg                                   |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 166                                      | OG                                                                                                                                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 166.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.1328)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 166.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| )                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.0669                                   | 9991                                                                                                                                                                                                                                | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 338295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 576140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4333305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5360000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.0669                                   | 9991                                                                                                                                                                                                                                | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 338295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 576140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4333305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5360000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.0000                                   | 0000                                                                                                                                                                                                                                | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 676591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 152281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4333305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5360000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| i Se                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23                                       |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ot                                       |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.3980                                   | 0004                                                                                                                                                                                                                                | 1233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 800004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9800004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 233333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6019                                   | 9995                                                                                                                                                                                                                                | 576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 766667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0199995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5766667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.0000                                   | 0000                                                                                                                                                                                                                                | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.7919                                   | 9999                                                                                                                                                                                                                                | 9400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9199999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.2080                                   | 0000                                                                                                                                                                                                                                | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 600000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R:<br>BIT =<br>COLLIN<br>S = 0<br>DM=300 | T<br>EAR<br>0 1<br>*0.0                                                                                                                                                                                                             | = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TS:                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| INTS u                                   | sed                                                                                                                                                                                                                                 | foi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | metic s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pace g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | roup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0000                                   | 0000                                                                                                                                                                                                                                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.5000                                   | 0000                                                                                                                                                                                                                                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.5000                                   | 0000                                                                                                                                                                                                                                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0000                                   | 0000                                                                                                                                                                                                                                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                          | AK_msg<br>166<br>)<br>2.0669<br>2.0669<br>2.0669<br>2.0669<br>2.0669<br>2.060<br>3.0000<br>1.5000<br>0.7919<br>0.2080<br>A:<br>3IT =<br>0.0000<br>0.7919<br>0.2080<br>A:<br>3IT =<br>0.0000<br>0.5000<br>0.5000<br>0.5000<br>0.0000 | AK msg:<br>166 OG<br>2.06699991<br>2.06699991<br>2.06699991<br>2.06699991<br>2.06699991<br>2.060199995<br>2.33<br>2.33<br>2.33<br>3.35<br>2.33<br>3.35<br>2.33<br>3.35<br>2.33<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55 | AK_msg:<br>166 OG (<br>2.06699991220<br>2.06699991220<br>2.06699991220<br>2.06699991220<br>2.06699991220<br>2.06099991220<br>2.060199991220<br>2.060199995760<br>2.039800004233<br>2.60199995760<br>2.000000000<br>2.79199999400<br>2.0800000000<br>2.0800000000<br>2.0800000000<br>2.000000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.00000000<br>2.000000000<br>2.0000000000 | AK msg:<br>166 OG ( 166.)<br>2.066999991226547<br>2.066999991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06099991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.06699991226547<br>2.066999995766667<br>2.000000000000000000000000000000000000 | AK msg:<br>166 OG ( 166.2.1328)<br>2.06699991226547 1.19<br>2.06699991226547 1.19<br>2.06699991226547 1.19<br>2.06699991226547 1.19<br>2.0609000000000000 -2.38<br>Se<br>2 3<br>3t<br>0.39800004233333 0.39<br>0.60199995766667 0.60<br>0.00000000 0.000<br>0.000<br>0.0000000 0.000<br>0.000<br>0.0000000 0.20<br>A:<br>3IT = T<br>COLLINEAR = T<br>S = 0 0 1<br>DM=300*0.0<br>VTS:<br>INTS used for magnetic sp<br>0.00000000 0.5000000<br>0.50000000 0.5000000<br>0.50000000 0.5000000 | AK msg:         166       OG ( 166.2.1328)       BNS         2.06699991226547       1.193382953         2.06699991226547       1.193382953         2.06699991226547       1.193382953         2.0000000000000       -2.386765913         1 Se       3         2 3       3         2 3       3         39800004233333       0.39800004233333         0.39800000000000       0.000000000         0.60199995766667       0.601999957         0.0000000000000       0.791999994         0.20800000600000       0.208000000         0.79199999400000       0.208000000         0.20800000600000       0.208000000         0.20800000600000       0.208000000         31T = T       COLLINEAR = T         S = 0 0 1       0         0.00000000       0.0000000         0.00000000       0.0000000         0.00000000       0.50000000         0.00000000       0.50000000         0.00000000       0.50000000 | <pre>AR_msg:<br/>166 OG ( 166.2.1328) BNS (<br/>)<br/>2.06699991226547 1.19338295576140<br/>2.06699991226547 1.19338295576140<br/>).00000000000000 -2.38676591152281<br/>i Se<br/>2 3<br/>st<br/>).3980004233333 0.3980004233333<br/>).60199995766667 0.60199995766667<br/>0.00000000000 0.000000000000<br/>0.79199999400000 0.79199999400000<br/>0.2080000600000 0.2080000600000<br/>A:<br/>3IT = T<br/>COLLINEAR = T<br/>S = 0 0 1<br/>DM=300*0.0<br/>VTS:<br/>INTS used for magnetic space group<br/>0.00000000 0.0000000 0.0000000<br/>0.50000000 0.5000000 0.5000000<br/>0.50000000 0.5000000 0.0000000<br/>0.00000000 0.5000000 0.0000000</pre> | AK msg:       166 OG ( 166.2.1328) BNS ( 166.9         166 OG ( 166.2.1328) BNS ( 166.9         2.06699991226547 1.19338295576140 9.5         2.06699991226547 1.19338295576140 9.5         0.000000000000 -2.38676591152281 9.5         i Se         2 3         st         0.39800004233333 0.39800004233333 0.3         0.60199995766667 0.60199995766667 0.6         0.000000000000 0.00000000 0.00000000 0.0         0.79199999400000 0.79199999400000 0.7         0.2080000600000 0.2080000600000 0.2         R:         3IT = T         COLLINEAR = T         S = 0 0 1         DM=300*0.0         VTS:         INTS used for magnetic space group         0.0000000 0.5000000 0.5000000 1         0.5000000 0.5000000 0.5000000 1         0.5000000 0.5000000 0.0000000 1 | IAC msg:       166 OG ( 166.2.1328) BNS ( 166.98)         2.06699991226547 1.19338295576140 9.54333305         2.06699991226547 1.19338295576140 9.54333305         2.06699991226547 1.19338295576140 9.54333305         3.0000000000000 -2.38676591152281 9.54333305         3.5t         0.39800004233333 0.39800004233333 0.39800004         0.60199995766667 0.60199995766667 0.60199995         0.000000000000 0.0000000000 0.00000000         0.79199999400000 0.79199999400000 0.79199995         0.2080000600000 0.2080000600000 0.20800000         0.2080000600000 0.20800000600000 0.20800000         0.20800000600000 0.20800000000 0.20800000         0.208000000000 0.20800000000 0.20800000         0.2080000000 0.20800000000 0.20800000         0.208000000 0.208000000 0.208000000 0.20800000         0.208000000 0.208000000 0.20800000 0.20800000         0.208000000 0.208000000 0.20800000 0.20800000         0.208000000 0.20800000 0.20800000 0.20800000         0.0000000 0.0000000 0.0000000 1.0 1         0.0000000 0.50000000 0.50000000 1.0 1         0.0000000 0.50000000 0.00000000 1.0 1 |

We can get the standard POSCAR (POSCAR\_msg) and some setting parameters of INCAR and KPOINTS.

All space groups' HSKPs can be found on: https://github.com/zjwang11/IR2PW/ lib\_irrep\_bcs/max\_KPOINTS\_VASP/

Then we construct a Bi<sub>2</sub>Se<sub>3</sub> TB model considering soc (or generated by wannier90)



The constructed TB model only considers p-orbital, so there are only 18 occupation bands in  $Bi_2Se_3$ .

#### "tqc.data"

 166
 4
 18

 1 12 11 12
 9 10 11
 7
 8 12
 9 10 11

 2 12 12 11
 9 10 12
 12
 9 10
 7
 8 11

 4
 7
 8
 5
 6
 7
 8
 7
 8

 5
 7
 8
 7
 8
 5
 6
 7
 8
 7
 8

### Prepare the Hamiltonian files named Ida\_hr.dat /soc\_hr.dat and tbbox.in

### Format of tqc.data

#SG (space group number) #nk (number of HSKPs) #nb (number of bands) HSKP#1 irrep(HSKP#1)#1 irrep(HSKP#1)#2 ... HSKP#2 irrep(HSKP#2)#1 irrep(HSKP#2)#2 ...

Back to the web: https://tm.iphy.ac.cn/TopMat\_1651msg.html



- 3) Press solve\_CR button.
- 4) Press cal\_SI button.

solve\_CR :

cal\_SI :

The input data is calculated with spin-orbit coupling. Satisfy  $\ensuremath{\mathsf{CR}}$ 

The input data is calculated with spin-orbit coupling. Z2=0, Z4=1,

We can see that  $Bi_2Se_3$  satisfies the CR, and its SI is Z4=1, so we can diagnose that this is a topological material.

# Thank you !!!